modeling_utils.py 46.9 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
18
import itertools
19
import os
20
import re
21
from collections import OrderedDict
22
from functools import partial
23
from typing import Any, Callable, List, Optional, Tuple, Union
24

25
import safetensors
26
import torch
27
from huggingface_hub import create_repo
28
from huggingface_hub.utils import validate_hf_hub_args
29
from torch import Tensor, nn
30

31
32
from .. import __version__
from ..utils import (
33
    CONFIG_NAME,
34
    FLAX_WEIGHTS_NAME,
35
    SAFETENSORS_FILE_EXTENSION,
36
    SAFETENSORS_WEIGHTS_NAME,
37
    WEIGHTS_NAME,
38
39
    _add_variant,
    _get_model_file,
40
    deprecate,
41
42
43
44
    is_accelerate_available,
    is_torch_version,
    logging,
)
45
from ..utils.hub_utils import PushToHubMixin
46
47
48
49
50


logger = logging.get_logger(__name__)


51
52
53
54
55
56
if is_torch_version(">=", "1.9.0"):
    _LOW_CPU_MEM_USAGE_DEFAULT = True
else:
    _LOW_CPU_MEM_USAGE_DEFAULT = False


57
58
59
60
61
62
if is_accelerate_available():
    import accelerate
    from accelerate.utils import set_module_tensor_to_device
    from accelerate.utils.versions import is_torch_version


63
def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
64
    try:
Patrick von Platen's avatar
Patrick von Platen committed
65
66
        parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
        return next(parameters_and_buffers).device
67
68
69
70
71
72
73
74
75
76
77
78
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


79
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
80
    try:
81
82
83
84
85
86
87
88
        params = tuple(parameter.parameters())
        if len(params) > 0:
            return params[0].dtype

        buffers = tuple(parameter.buffers())
        if len(buffers) > 0:
            return buffers[0].dtype

89
90
91
92
93
94
95
96
97
98
99
100
    except StopIteration:
        # For torch.nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


101
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
102
    """
103
    Reads a checkpoint file, returning properly formatted errors if they arise.
104
105
    """
    try:
106
107
        file_extension = os.path.basename(checkpoint_file).split(".")[-1]
        if file_extension == SAFETENSORS_FILE_EXTENSION:
108
            return safetensors.torch.load_file(checkpoint_file, device="cpu")
109
110
        else:
            return torch.load(checkpoint_file, map_location="cpu")
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
127
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' "
128
129
130
131
132
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


133
134
135
136
137
138
139
def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    device: Optional[Union[str, torch.device]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
) -> List[str]:
140
141
142
    device = device or torch.device("cpu")
    dtype = dtype or torch.float32

143
144
    accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    unexpected_keys = []
    empty_state_dict = model.state_dict()
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            unexpected_keys.append(param_name)
            continue

        if empty_state_dict[param_name].shape != param.shape:
            model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
            raise ValueError(
                f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
            )

        if accepts_dtype:
            set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
        else:
            set_module_tensor_to_device(model, param_name, device, value=param)
    return unexpected_keys


165
def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
166
167
168
169
170
171
172
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
173
    def load(module: torch.nn.Module, prefix: str = ""):
174
175
176
177
178
179
180
181
182
183
184
185
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs


186
class ModelMixin(torch.nn.Module, PushToHubMixin):
187
188
189
    r"""
    Base class for all models.

Steven Liu's avatar
Steven Liu committed
190
191
    [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
    saving models.
192

Steven Liu's avatar
Steven Liu committed
193
        - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
194
    """
195

196
    config_name = CONFIG_NAME
Patrick von Platen's avatar
Patrick von Platen committed
197
    _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
198
    _supports_gradient_checkpointing = False
199
    _keys_to_ignore_on_load_unexpected = None
200

201
    def __init__(self):
202
203
        super().__init__()

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def __getattr__(self, name: str) -> Any:
        """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
        config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
        __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
        https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        """

        is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
        is_attribute = name in self.__dict__

        if is_in_config and not is_attribute:
            deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
            deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
            return self._internal_dict[name]

        # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
        return super().__getattr__(name)

222
223
224
225
226
227
228
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

229
    def enable_gradient_checkpointing(self) -> None:
230
        """
Steven Liu's avatar
Steven Liu committed
231
232
        Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
233
234
235
236
237
        """
        if not self._supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

238
    def disable_gradient_checkpointing(self) -> None:
239
        """
Steven Liu's avatar
Steven Liu committed
240
241
        Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
        *checkpoint activations* in other frameworks).
242
243
244
245
        """
        if self._supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

246
247
248
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
249
250
251
252
253
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
254
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
255
256
257
258
259
260
261
262

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        for module in self.children():
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)

263
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None:
264
        r"""
Steven Liu's avatar
Steven Liu committed
265
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
266

Steven Liu's avatar
Steven Liu committed
267
268
        When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
        inference. Speed up during training is not guaranteed.
269

Steven Liu's avatar
Steven Liu committed
270
271
272
273
274
275
        <Tip warning={true}>

        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import UNet2DConditionModel
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> model = UNet2DConditionModel.from_pretrained(
        ...     "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
        ... )
        >>> model = model.to("cuda")
        >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        ```
296
        """
297
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
298

299
    def disable_xformers_memory_efficient_attention(self) -> None:
300
        r"""
Steven Liu's avatar
Steven Liu committed
301
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
302
303
304
        """
        self.set_use_memory_efficient_attention_xformers(False)

305
306
307
308
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
309
        save_function: Optional[Callable] = None,
310
        safe_serialization: bool = True,
311
        variant: Optional[str] = None,
312
313
        push_to_hub: bool = False,
        **kwargs,
314
315
    ):
        """
Steven Liu's avatar
Steven Liu committed
316
317
        Save a model and its configuration file to a directory so that it can be reloaded using the
        [`~models.ModelMixin.from_pretrained`] class method.
318
319
320

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
321
                Directory to save a model and its configuration file to. Will be created if it doesn't exist.
322
            is_main_process (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
323
324
325
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
326
            save_function (`Callable`):
Steven Liu's avatar
Steven Liu committed
327
328
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
329
                `DIFFUSERS_SAVE_MODE`.
330
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
331
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
332
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
333
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
334
335
336
337
338
339
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
340
341
342
343
344
345
346
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        os.makedirs(save_directory, exist_ok=True)

347
348
349
350
351
352
353
354
355
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

        # Only save the model itself if we are using distributed training
356
357
358
359
360
        model_to_save = self

        # Attach architecture to the config
        # Save the config
        if is_main_process:
361
            model_to_save.save_config(save_directory)
362
363
364
365

        # Save the model
        state_dict = model_to_save.state_dict()

366
        weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
367
        weights_name = _add_variant(weights_name, variant)
368

369
        # Save the model
370
371
372
373
374
375
        if safe_serialization:
            safetensors.torch.save_file(
                state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
            )
        else:
            torch.save(state_dict, os.path.join(save_directory, weights_name))
376

377
        logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
378

379
380
381
382
383
384
385
386
387
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

388
    @classmethod
389
    @validate_hf_hub_args
390
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
391
        r"""
Steven Liu's avatar
Steven Liu committed
392
        Instantiate a pretrained PyTorch model from a pretrained model configuration.
393

Steven Liu's avatar
Steven Liu committed
394
395
        The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
        train the model, set it back in training mode with `model.train()`.
396
397
398
399
400

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
401
402
403
404
                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`~ModelMixin.save_pretrained`].
405
406

            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
407
408
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
Kashif Rasul's avatar
Kashif Rasul committed
409
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
410
411
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
412
413
414
415
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
416
417
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
418
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
419
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
420
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
Steven Liu's avatar
Steven Liu committed
421
            output_loading_info (`bool`, *optional*, defaults to `False`):
422
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
423
            local_files_only(`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
424
425
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
426
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
427
428
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
429
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
430
431
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
432
433
            from_flax (`bool`, *optional*, defaults to `False`):
                Load the model weights from a Flax checkpoint save file.
434
            subfolder (`str`, *optional*, defaults to `""`):
Steven Liu's avatar
Steven Liu committed
435
                The subfolder location of a model file within a larger model repository on the Hub or locally.
436
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
437
438
439
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
440
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
441
442
                A map that specifies where each submodule should go. It doesn't need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
443
444
                same device.

Steven Liu's avatar
Steven Liu committed
445
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
446
447
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
448
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
449
450
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
451
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
452
                The path to offload weights if `device_map` contains the value `"disk"`.
453
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
454
455
456
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
457
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
458
459
460
461
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
462
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
463
464
                Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
465
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
466
467
468
                If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
                `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
                weights. If set to `False`, `safetensors` weights are not loaded.
469
470
471

        <Tip>

Steven Liu's avatar
Steven Liu committed
472
473
474
475
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`. You can also activate the special
        ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
        firewalled environment.
476
477
478

        </Tip>

Steven Liu's avatar
Steven Liu committed
479
        Example:
480

Steven Liu's avatar
Steven Liu committed
481
482
        ```py
        from diffusers import UNet2DConditionModel
483

Steven Liu's avatar
Steven Liu committed
484
485
486
487
        unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
        ```

        If you get the error message below, you need to finetune the weights for your downstream task:
488

Steven Liu's avatar
Steven Liu committed
489
490
491
492
493
        ```bash
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
494
        """
495
        cache_dir = kwargs.pop("cache_dir", None)
496
497
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
        force_download = kwargs.pop("force_download", False)
498
        from_flax = kwargs.pop("from_flax", False)
499
500
501
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
502
503
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
504
        revision = kwargs.pop("revision", None)
505
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
506
        subfolder = kwargs.pop("subfolder", None)
507
        device_map = kwargs.pop("device_map", None)
508
509
510
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
511
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
512
        variant = kwargs.pop("variant", None)
513
514
515
516
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
517
            use_safetensors = True
518
            allow_pickle = True
519

520
521
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
522
            logger.warning(
523
524
525
526
527
528
529
530
531
532
533
534
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_accelerate_available():
            raise NotImplementedError(
                "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
                " `device_map=None`. You can install accelerate with `pip install accelerate`."
            )

535
536
        # Check if we can handle device_map and dispatching the weights
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
537
538
539
540
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )
541

542
543
544
545
546
547
548
549
550
551
552
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )
553

554
555
556
        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

557
558
559
560
561
        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }
562

563
564
565
566
567
568
569
570
571
572
        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
573
            token=token,
574
575
576
            revision=revision,
            subfolder=subfolder,
            device_map=device_map,
577
578
579
            max_memory=max_memory,
            offload_folder=offload_folder,
            offload_state_dict=offload_state_dict,
580
581
582
583
584
            user_agent=user_agent,
            **kwargs,
        )

        # load model
585
        model_file = None
586
        if from_flax:
587
            model_file = _get_model_file(
588
                pretrained_model_name_or_path,
589
                weights_name=FLAX_WEIGHTS_NAME,
590
591
592
593
594
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
595
                token=token,
596
597
598
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
599
                commit_hash=commit_hash,
600
601
            )
            model = cls.from_config(config, **unused_kwargs)
602

603
604
605
606
607
            # Convert the weights
            from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model

            model = load_flax_checkpoint_in_pytorch_model(model, model_file)
        else:
608
            if use_safetensors:
609
                try:
610
                    model_file = _get_model_file(
611
                        pretrained_model_name_or_path,
612
                        weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
613
614
615
616
617
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
618
                        token=token,
619
620
621
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
622
                        commit_hash=commit_hash,
623
                    )
624
625
626
                except IOError as e:
                    if not allow_pickle:
                        raise e
627
628
                    pass
            if model_file is None:
629
                model_file = _get_model_file(
630
                    pretrained_model_name_or_path,
631
                    weights_name=_add_variant(WEIGHTS_NAME, variant),
632
633
634
635
636
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
637
                    token=token,
638
639
640
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
641
                    commit_hash=commit_hash,
642
643
644
645
646
647
648
649
650
651
                )

            if low_cpu_mem_usage:
                # Instantiate model with empty weights
                with accelerate.init_empty_weights():
                    model = cls.from_config(config, **unused_kwargs)

                # if device_map is None, load the state dict and move the params from meta device to the cpu
                if device_map is None:
                    param_device = "cpu"
652
                    state_dict = load_state_dict(model_file, variant=variant)
653
                    model._convert_deprecated_attention_blocks(state_dict)
654
                    # move the params from meta device to cpu
655
656
657
658
659
                    missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
                    if len(missing_keys) > 0:
                        raise ValueError(
                            f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
                            f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
Alexander Pivovarov's avatar
Alexander Pivovarov committed
660
                            " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
661
662
                            " those weights or else make sure your checkpoint file is correct."
                        )
663

664
665
666
667
668
669
670
                    unexpected_keys = load_model_dict_into_meta(
                        model,
                        state_dict,
                        device=param_device,
                        dtype=torch_dtype,
                        model_name_or_path=pretrained_model_name_or_path,
                    )
671
672
673
674
675
676
677
678
679
680

                    if cls._keys_to_ignore_on_load_unexpected is not None:
                        for pat in cls._keys_to_ignore_on_load_unexpected:
                            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

                    if len(unexpected_keys) > 0:
                        logger.warn(
                            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                        )

681
682
                else:  # else let accelerate handle loading and dispatching.
                    # Load weights and dispatch according to the device_map
Alexander Pivovarov's avatar
Alexander Pivovarov committed
683
                    # by default the device_map is None and the weights are loaded on the CPU
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
                    try:
                        accelerate.load_checkpoint_and_dispatch(
                            model,
                            model_file,
                            device_map,
                            max_memory=max_memory,
                            offload_folder=offload_folder,
                            offload_state_dict=offload_state_dict,
                            dtype=torch_dtype,
                        )
                    except AttributeError as e:
                        # When using accelerate loading, we do not have the ability to load the state
                        # dict and rename the weight names manually. Additionally, accelerate skips
                        # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
                        # (which look like they should be private variables?), so we can't use the standard hooks
                        # to rename parameters on load. We need to mimic the original weight names so the correct
                        # attributes are available. After we have loaded the weights, we convert the deprecated
                        # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
                        # the weights so we don't have to do this again.

                        if "'Attention' object has no attribute" in str(e):
                            logger.warn(
                                f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
                                " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
                                " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
                                " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
                                " please also re-upload it or open a PR on the original repository."
                            )
                            model._temp_convert_self_to_deprecated_attention_blocks()
                            accelerate.load_checkpoint_and_dispatch(
                                model,
                                model_file,
                                device_map,
                                max_memory=max_memory,
                                offload_folder=offload_folder,
                                offload_state_dict=offload_state_dict,
                                dtype=torch_dtype,
                            )
                            model._undo_temp_convert_self_to_deprecated_attention_blocks()
                        else:
                            raise e
725
726
727
728
729
730
731
732

                loading_info = {
                    "missing_keys": [],
                    "unexpected_keys": [],
                    "mismatched_keys": [],
                    "error_msgs": [],
                }
            else:
733
                model = cls.from_config(config, **unused_kwargs)
734

735
                state_dict = load_state_dict(model_file, variant=variant)
736
                model._convert_deprecated_attention_blocks(state_dict)
737

738
739
740
741
742
743
744
                model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                    model,
                    state_dict,
                    model_file,
                    pretrained_model_name_or_path,
                    ignore_mismatched_sizes=ignore_mismatched_sizes,
                )
745

746
747
748
749
750
751
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
752
753
754
755
756
757
758
759
760
761
762
763
764

        if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
            raise ValueError(
                f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
            )
        elif torch_dtype is not None:
            model = model.to(torch_dtype)

        model.register_to_config(_name_or_path=pretrained_model_name_or_path)

        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        if output_loading_info:
765
766
767
768
769
770
771
772
            return model, loading_info

        return model

    @classmethod
    def _load_pretrained_model(
        cls,
        model,
773
        state_dict: OrderedDict,
774
        resolved_archive_file,
775
776
        pretrained_model_name_or_path: Union[str, os.PathLike],
        ignore_mismatched_sizes: bool = False,
777
778
779
    ):
        # Retrieve missing & unexpected_keys
        model_state_dict = model.state_dict()
780
        loaded_keys = list(state_dict.keys())
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

        expected_keys = list(model_state_dict.keys())

        original_loaded_keys = loaded_keys

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Make sure we are able to load base models as well as derived models (with heads)
        model_to_load = model

        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            ignore_mismatched_sizes,
        ):
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
                original_loaded_keys,
                ignore_mismatched_sizes,
            )
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict)

        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

Patrick von Platen's avatar
Patrick von Platen committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
                " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
                " identical (initializing a BertForSequenceClassification model from a"
                " BertForSequenceClassification model)."
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        elif len(mismatched_keys) == 0:
            logger.info(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
                f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
                " without further training."
            )
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
                " able to use it for predictions and inference."
            )
870
871
872
873

        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs

    @property
874
    def device(self) -> torch.device:
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        return get_parameter_device(self)

    @property
    def dtype(self) -> torch.dtype:
        """
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
        """
        return get_parameter_dtype(self)

    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
Steven Liu's avatar
Steven Liu committed
890
        Get number of (trainable or non-embedding) parameters in the module.
891
892
893

        Args:
            only_trainable (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
894
                Whether or not to return only the number of trainable parameters.
895
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
896
                Whether or not to return only the number of non-embedding parameters.
897
898
899

        Returns:
            `int`: The number of parameters.
Steven Liu's avatar
Steven Liu committed
900
901
902
903
904
905
906
907
908
909
910

        Example:

        ```py
        from diffusers import UNet2DConditionModel

        model_id = "runwayml/stable-diffusion-v1-5"
        unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
        unet.num_parameters(only_trainable=True)
        859520964
        ```
911
912
913
914
915
916
917
918
919
920
921
922
923
924
        """

        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight"
                for name, module_type in self.named_modules()
                if isinstance(module_type, torch.nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
925

926
    def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
        deprecated_attention_block_paths = []

        def recursive_find_attn_block(name, module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_paths.append(name)

            for sub_name, sub_module in module.named_children():
                sub_name = sub_name if name == "" else f"{name}.{sub_name}"
                recursive_find_attn_block(sub_name, sub_module)

        recursive_find_attn_block("", self)

        # NOTE: we have to check if the deprecated parameters are in the state dict
        # because it is possible we are loading from a state dict that was already
        # converted

        for path in deprecated_attention_block_paths:
            # group_norm path stays the same

            # query -> to_q
            if f"{path}.query.weight" in state_dict:
                state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
            if f"{path}.query.bias" in state_dict:
                state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")

            # key -> to_k
            if f"{path}.key.weight" in state_dict:
                state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
            if f"{path}.key.bias" in state_dict:
                state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")

            # value -> to_v
            if f"{path}.value.weight" in state_dict:
                state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
            if f"{path}.value.bias" in state_dict:
                state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")

            # proj_attn -> to_out.0
            if f"{path}.proj_attn.weight" in state_dict:
                state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
            if f"{path}.proj_attn.bias" in state_dict:
                state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
969

970
    def _temp_convert_self_to_deprecated_attention_blocks(self) -> None:
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
        deprecated_attention_block_modules = []

        def recursive_find_attn_block(module):
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.query = module.to_q
            module.key = module.to_k
            module.value = module.to_v
            module.proj_attn = module.to_out[0]

            # We don't _have_ to delete the old attributes, but it's helpful to ensure
            # that _all_ the weights are loaded into the new attributes and we're not
            # making an incorrect assumption that this model should be converted when
            # it really shouldn't be.
            del module.to_q
            del module.to_k
            del module.to_v
            del module.to_out

997
    def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None:
998
999
        deprecated_attention_block_modules = []

1000
        def recursive_find_attn_block(module) -> None:
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
            if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
                deprecated_attention_block_modules.append(module)

            for sub_module in module.children():
                recursive_find_attn_block(sub_module)

        recursive_find_attn_block(self)

        for module in deprecated_attention_block_modules:
            module.to_q = module.query
            module.to_k = module.key
            module.to_v = module.value
            module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])

            del module.query
            del module.key
            del module.value
            del module.proj_attn