test_pipelines.py 108 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import re
21
import shutil
22
import sys
23
import tempfile
24
import traceback
25
import unittest
26
import unittest.mock as mock
27
import warnings
28
29

import numpy as np
Anh71me's avatar
Anh71me committed
30
import PIL.Image
31
import requests_mock
32
import safetensors.torch
33
import torch
34
import torch.nn as nn
35
from huggingface_hub import snapshot_download
36
from huggingface_hub.utils import HfHubHTTPError
37
38
from parameterized import parameterized
from PIL import Image
39
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
40

41
from diffusers import (
42
    AutoencoderKL,
43
    ConfigMixin,
44
45
46
47
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
48
    DiffusionPipeline,
49
50
51
52
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
53
    ModelMixin,
54
    PNDMScheduler,
55
    StableDiffusionImg2ImgPipeline,
56
    StableDiffusionInpaintPipelineLegacy,
57
    StableDiffusionPipeline,
58
    UNet2DConditionModel,
59
    UNet2DModel,
60
    UniPCMultistepScheduler,
61
    logging,
62
)
Sayak Paul's avatar
Sayak Paul committed
63
from diffusers.pipelines.pipeline_utils import _get_pipeline_class
64
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
65
66
67
68
from diffusers.utils import (
    CONFIG_NAME,
    WEIGHTS_NAME,
)
69
70
71
from diffusers.utils.torch_utils import is_compiled_module

from ..testing_utils import (
72
    CaptureLogger,
73
    backend_empty_cache,
74
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
75
    floats_tensor,
76
    get_python_version,
77
    get_tests_dir,
78
    is_torch_compile,
79
    load_numpy,
Dhruv Nair's avatar
Dhruv Nair committed
80
    nightly,
81
82
    require_compel,
    require_flax,
Marc Sun's avatar
Marc Sun committed
83
    require_hf_hub_version_greater,
84
    require_onnxruntime,
85
86
    require_peft_backend,
    require_peft_version_greater,
Dhruv Nair's avatar
Dhruv Nair committed
87
    require_torch_2,
88
    require_torch_accelerator,
Marc Sun's avatar
Marc Sun committed
89
    require_transformers_version_greater,
90
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
91
92
    slow,
    torch_device,
93
)
94
95


96
enable_full_determinism()
97
98


99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        model = torch.compile(model)
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
117
118
119
120
121

        # previous diffusers versions stripped compilation off
        # compiled modules
        assert is_compiled_module(ddpm.unet)

122
123
124
125
126
127
128
129
130
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
131
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
132
133

        generator = torch.Generator(device=torch_device).manual_seed(0)
134
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
135

136
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
137
138
139
140
141
142
143
144
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


145
146
147
class CustomEncoder(ModelMixin, ConfigMixin):
    def __init__(self):
        super().__init__()
148
        self.linear = nn.Linear(3, 3)
149
150
151
152
153
154
155
156


class CustomPipeline(DiffusionPipeline):
    def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler):
        super().__init__()
        self.register_modules(encoder=encoder, scheduler=scheduler)


157
class DownloadTests(unittest.TestCase):
158
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
159
160
161
162
163
164
165
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
166
                DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
167
168

            download_requests = [r.method for r in m.request_history]
169
            assert download_requests.count("HEAD") == 15, "15 calls to files"
170
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
171
172
173
            assert len(download_requests) == 32, (
                "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"
            )
174
175
176
177
178
179
180

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
181
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
182
            assert cache_requests.count("GET") == 1, "model info is only GET"
183
184
185
            assert len(cache_requests) == 2, (
                "We should call only `model_info` to check for _commit hash and `send_telemetry`"
            )
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def test_less_downloads_passed_object(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            cached_folder = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            # make sure safety checker is not downloaded
            assert "safety_checker" not in os.listdir(cached_folder)

            # make sure rest is downloaded
            assert "unet" in os.listdir(cached_folder)
            assert "tokenizer" in os.listdir(cached_folder)
            assert "vae" in os.listdir(cached_folder)
            assert "model_index.json" in os.listdir(cached_folder)
            assert "scheduler" in os.listdir(cached_folder)
            assert "feature_extractor" in os.listdir(cached_folder)

204
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_less_downloads_passed_object_calls(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            # 15 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("HEAD") == 13, "13 calls to files"
            # 17 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
221
222
223
            assert len(download_requests) == 28, (
                "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"
            )
224
225
226
227
228
229
230
231
232

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
            assert cache_requests.count("GET") == 1, "model info is only GET"
233
234
235
            assert len(cache_requests) == 2, (
                "We should call only `model_info` to check for _commit hash and `send_telemetry`"
            )
236

237
238
239
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
240
            tmpdirname = DiffusionPipeline.download(
241
242
243
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

244
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
245
246
247
248
249
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
250
251
252
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

253
254
255
256
257
258
259
260
261
262
263
    def test_force_safetensors_error(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            with self.assertRaises(EnvironmentError):
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
                    safety_checker=None,
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                )

264
265
266
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
267
            tmpdirname = DiffusionPipeline.download(
268
269
270
271
272
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

273
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
274
275
276
277
278
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    def test_download_safetensors_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "safetensors" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".safetensors" in f]) == 8
                assert not any(".bin" in f for f in files)

    def test_download_bin_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=False,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "bin" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".bin" in f]) == 8
                assert not any(".safetensors" in f for f in files)

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    def test_download_no_openvino_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-open-vino",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # make sure that by default no openvino weights are downloaded
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any("openvino_" in f for f in files)

    def test_download_no_onnx_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
345
                "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
346
                cache_dir=tmpdirname,
347
                use_safetensors=False,
348
349
350
351
352
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

353
            # make sure that by default no onnx weights are downloaded for non-ONNX pipelines
354
355
356
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any((f.endswith(".onnx") or f.endswith(".pb")) for f in files)

357
358
    @require_onnxruntime
    def test_download_onnx_by_default_for_onnx_pipelines(self):
359
360
361
362
363
364
365
366
367
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

368
            # make sure that by default onnx weights are downloaded for ONNX pipelines
369
370
371
372
            assert any((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert any((f.endswith(".onnx")) for f in files)
            assert any((f.endswith(".pb")) for f in files)

373
374
375
376
377
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
378
        pipe = pipe.to(torch_device)
379
        generator = torch.manual_seed(0)
380
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
381
382

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
383
        pipe_2 = pipe_2.to(torch_device)
384
        generator = torch.manual_seed(0)
385
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
386
387
388
389
390
391
392
393

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
394
        pipe = pipe.to(torch_device)
395
        generator = torch.manual_seed(0)
396
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
397
398
399
400

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
401
            pipe_2 = pipe_2.to(torch_device)
402

403
            generator = torch.manual_seed(0)
404

405
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
406
407
408
409
410
411

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
412
        pipe = pipe.to(torch_device)
413
414

        generator = torch.manual_seed(0)
415
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
416
417
418
419

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
420
            pipe_2 = pipe_2.to(torch_device)
421

422
            generator = torch.manual_seed(0)
423

424
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
425
426
427

        assert np.max(np.abs(out - out_2)) < 1e-3

428
429
430
431
432
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
433
        response_mock.raise_for_status.side_effect = HfHubHTTPError("Server down", response=mock.Mock())
434
435
436
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
437
        orig_pipe = DiffusionPipeline.from_pretrained(
438
439
440
441
442
443
444
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
445
            pipe = DiffusionPipeline.from_pretrained(
446
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
447
448
449
450
451
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
452
453
454
455
456
457
458
459
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_local_files_only_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
460
        response_mock.raise_for_status.side_effect = HfHubHTTPError("Server down", response=mock.Mock())
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        response_mock.json.return_value = {}

        # first check that with local files only the pipeline can only be used if cached
        with self.assertRaises(FileNotFoundError):
            with tempfile.TemporaryDirectory() as tmpdirname:
                orig_pipe = DiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True, cache_dir=tmpdirname
                )

        # now download
        orig_pipe = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-torch")

        # make sure it can be loaded with local_files_only
        orig_pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to connect to the internet.
        # Make sure it works local_files_only only works here!
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
488
489
490
491
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
492
493
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
494
            with tempfile.TemporaryDirectory() as tmpdirname:
495
                tmpdirname = StableDiffusionPipeline.download(
496
497
498
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
499
                )
500
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
501
502
503
504
505
506
507
508
509
510
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

    def test_download_variant_all(self):
511
512
513
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
514
515
516
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
517
                tmpdirname = StableDiffusionPipeline.download(
518
519
520
521
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
522
                )
523
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
524
525
526
527
528
529
530
531
532
533
534
535
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

    def test_download_variant_partly(self):
536
537
538
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
539
540
541
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
                tmpdirname = StableDiffusionPipeline.download(
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
                files = [item for sublist in all_root_files for item in sublist]

                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)
562

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    def test_download_variants_with_sharded_checkpoints(self):
        # Here we test for downloading of "variant" files belonging to the `unet` and
        # the `text_encoder`. Their checkpoints can be sharded.
        for use_safetensors in [True, False]:
            for variant in ["fp16", None]:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = DiffusionPipeline.download(
                        "hf-internal-testing/tiny-stable-diffusion-pipe-variants-right-format",
                        safety_checker=None,
                        cache_dir=tmpdirname,
                        variant=variant,
                        use_safetensors=use_safetensors,
                    )

                    all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                    files = [item for sublist in all_root_files for item in sublist]

                    # Check for `model_ext` and `variant`.
                    model_ext = ".safetensors" if use_safetensors else ".bin"
                    unexpected_ext = ".bin" if use_safetensors else ".safetensors"
                    model_files = [f for f in files if f.endswith(model_ext)]
                    assert not any(f.endswith(unexpected_ext) for f in files)
                    assert all(variant in f for f in model_files if f.endswith(model_ext) and variant is not None)

    def test_download_legacy_variants_with_sharded_ckpts_raises_warning(self):
        repo_id = "hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds"
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        deprecated_warning_msg = "Warning: The repository contains sharded checkpoints for variant"

592
593
594
        with CaptureLogger(logger) as cap_logger:
            with tempfile.TemporaryDirectory() as tmpdirname:
                local_repo_id = snapshot_download(repo_id, cache_dir=tmpdirname)
595

596
597
598
599
600
601
602
                _ = DiffusionPipeline.from_pretrained(
                    local_repo_id,
                    safety_checker=None,
                    variant="fp16",
                    use_safetensors=True,
                )
        assert deprecated_warning_msg in str(cap_logger), "Deprecation warning not found in logs"
603

604
605
606
607
608
609
610
611
    def test_download_safetensors_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = True

        # text encoder is missing no variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
612
                    "hf-internal-testing/stable-diffusion-broken-variants",
613
614
                    cache_dir=tmpdirname,
                    variant=variant,
615
                    use_safetensors=use_safetensors,
616
                )
617
            assert "Could not find the necessary `safetensors` weights" in str(error_context.exception)
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"

    def test_download_bin_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = False

        # text encoder is missing Non-variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
642
                    cache_dir=tmpdirname,
643
644
                    variant=variant,
                    use_safetensors=use_safetensors,
645
                )
646
            assert "Error no file name" in str(error_context.exception)
647

648
649
650
651
652
653
654
655
656
657
658
659
660
        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
    def test_download_safetensors_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = True

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )

676
            assert "Could not find the necessary `safetensors` weights" in str(error_context.exception)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

    def test_download_bin_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = False

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )
            assert "Error no file name" in str(error_context.exception)
692

693
694
695
696
697
698
699
700
701
702
703
704
    def test_local_save_load_index(self):
        prompt = "hello"
        for variant in [None, "fp16"]:
            for use_safe in [True, False]:
                pipe = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    variant=variant,
                    use_safetensors=use_safe,
                    safety_checker=None,
                )
                pipe = pipe.to(torch_device)
                generator = torch.manual_seed(0)
705
                out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
706
707

                with tempfile.TemporaryDirectory() as tmpdirname:
708
                    pipe.save_pretrained(tmpdirname, variant=variant, safe_serialization=use_safe)
709
710
711
712
713
714
715
                    pipe_2 = StableDiffusionPipeline.from_pretrained(
                        tmpdirname, safe_serialization=use_safe, variant=variant
                    )
                    pipe_2 = pipe_2.to(torch_device)

                generator = torch.manual_seed(0)

716
                out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
717
718
719

                assert np.max(np.abs(out - out_2)) < 1e-3

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    def test_text_inversion_download(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe = pipe.to(torch_device)

        num_tokens = len(pipe.tokenizer)

        # single token load local
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<*>": torch.ones((32,))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<*>")
            assert token == num_tokens, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
            assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"

            prompt = "hey <*>"
741
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
            assert out.shape == (1, 128, 128, 3)

        # single token load local with weight name
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<**>": 2 * torch.ones((1, 32))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<**>")
            assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
            assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"

            prompt = "hey <**>"
757
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
            assert out.shape == (1, 128, 128, 3)

        # multi token load
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<***>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")

            assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
777
            assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
778
779

            prompt = "hey <***>"
780
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
            assert out.shape == (1, 128, 128, 3)

        # multi token load a1111
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {
                "string_to_param": {
                    "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
                },
                "name": "<****>",
            }
            torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<****>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")

            assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
805
            assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
806
807

            prompt = "hey <****>"
808
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
809
810
            assert out.shape == (1, 128, 128, 3)

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        # multi embedding load
        with tempfile.TemporaryDirectory() as tmpdirname1:
            with tempfile.TemporaryDirectory() as tmpdirname2:
                ten = {"<*****>": torch.ones((32,))}
                torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))

                ten = {"<******>": 2 * torch.ones((1, 32))}
                torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))

                pipe.load_textual_inversion([tmpdirname1, tmpdirname2])

                token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
                assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
                assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"

                token = pipe.tokenizer.convert_tokens_to_ids("<******>")
                assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
                assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"

                prompt = "hey <*****> <******>"
833
                out = pipe(prompt, num_inference_steps=1, output_type="np").images
834
835
                assert out.shape == (1, 128, 128, 3)

836
837
838
839
840
841
842
843
844
845
        # single token state dict load
        ten = {"<x>": torch.ones((32,))}
        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<x>")
        assert token == num_tokens + 10, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
        assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>"

        prompt = "hey <x>"
846
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        assert out.shape == (1, 128, 128, 3)

        # multi embedding state dict load
        ten1 = {"<xxxxx>": torch.ones((32,))}
        ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))}

        pipe.load_textual_inversion([ten1, ten2])

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>")
        assert token == num_tokens + 11, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
        assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>"

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>")
        assert token == num_tokens + 12, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
        assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>"

        prompt = "hey <xxxxx> <xxxxxx>"
866
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
        assert out.shape == (1, 128, 128, 3)

        # auto1111 multi-token state dict load
        ten = {
            "string_to_param": {
                "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
            },
            "name": "<xxxx>",
        }

        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>")
        token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1")
        token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2")

        assert token == num_tokens + 13, "Added token must be at spot `num_tokens`"
        assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`"
        assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
        assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2"

        prompt = "hey <xxxx>"
892
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
893
894
        assert out.shape == (1, 128, 128, 3)

895
896
897
898
899
900
901
902
903
        # multiple references to multi embedding
        ten = {"<cat>": torch.ones(3, 32)}
        pipe.load_textual_inversion(ten)

        assert (
            pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2"
        )

        prompt = "hey <cat> <cat>"
904
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
905
906
        assert out.shape == (1, 128, 128, 3)

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    def test_text_inversion_multi_tokens(self):
        pipe1 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe1 = pipe1.to(torch_device)

        token1, token2 = "<*>", "<**>"
        ten1 = torch.ones((32,))
        ten2 = torch.ones((32,)) * 2

        num_tokens = len(pipe1.tokenizer)

        pipe1.load_textual_inversion(ten1, token=token1)
        pipe1.load_textual_inversion(ten2, token=token2)
        emb1 = pipe1.text_encoder.get_input_embeddings().weight

        pipe2 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe2 = pipe2.to(torch_device)
        pipe2.load_textual_inversion([ten1, ten2], token=[token1, token2])
        emb2 = pipe2.text_encoder.get_input_embeddings().weight

        pipe3 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe3 = pipe3.to(torch_device)
        pipe3.load_textual_inversion(torch.stack([ten1, ten2], dim=0), token=[token1, token2])
        emb3 = pipe3.text_encoder.get_input_embeddings().weight

        assert len(pipe1.tokenizer) == len(pipe2.tokenizer) == len(pipe3.tokenizer) == num_tokens + 2
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token1)
            == pipe2.tokenizer.convert_tokens_to_ids(token1)
            == pipe3.tokenizer.convert_tokens_to_ids(token1)
            == num_tokens
        )
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token2)
            == pipe2.tokenizer.convert_tokens_to_ids(token2)
            == pipe3.tokenizer.convert_tokens_to_ids(token2)
            == num_tokens + 1
        )
        assert emb1[num_tokens].sum().item() == emb2[num_tokens].sum().item() == emb3[num_tokens].sum().item()
        assert (
            emb1[num_tokens + 1].sum().item() == emb2[num_tokens + 1].sum().item() == emb3[num_tokens + 1].sum().item()
        )

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
    def test_textual_inversion_unload(self):
        pipe1 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe1 = pipe1.to(torch_device)
        orig_tokenizer_size = len(pipe1.tokenizer)
        orig_emb_size = len(pipe1.text_encoder.get_input_embeddings().weight)

        token = "<*>"
        ten = torch.ones((32,))
        pipe1.load_textual_inversion(ten, token=token)
        pipe1.unload_textual_inversion()
        pipe1.load_textual_inversion(ten, token=token)
        pipe1.unload_textual_inversion()

        final_tokenizer_size = len(pipe1.tokenizer)
        final_emb_size = len(pipe1.text_encoder.get_input_embeddings().weight)
        # both should be restored to original size
        assert final_tokenizer_size == orig_tokenizer_size
        assert final_emb_size == orig_emb_size

Patrick von Platen's avatar
Patrick von Platen committed
976
977
978
979
980
981
982
983
984
985
986
987
988
    def test_download_ignore_files(self):
        # Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
            assert len(files) == 14

Marc Sun's avatar
Marc Sun committed
989
990
991
992
993
994
995
996
997
998
999
1000
    def test_download_dduf_with_custom_pipeline_raises_error(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.download(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", custom_pipeline="my_pipeline"
            )

    def test_download_dduf_with_connected_pipeline_raises_error(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.download(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", load_connected_pipeline=True
            )

1001
1002
1003
1004
1005
1006
1007
1008
    def test_get_pipeline_class_from_flax(self):
        flax_config = {"_class_name": "FlaxStableDiffusionPipeline"}
        config = {"_class_name": "StableDiffusionPipeline"}

        # when loading a PyTorch Pipeline from a FlaxPipeline `model_index.json`, e.g.: https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-lms-pipe/blob/7a9063578b325779f0f1967874a6771caa973cad/model_index.json#L2
        # we need to make sure that we don't load the Flax Pipeline class, but instead the PyTorch pipeline class
        assert _get_pipeline_class(DiffusionPipeline, flax_config) == _get_pipeline_class(DiffusionPipeline, config)

1009

Patrick von Platen's avatar
Patrick von Platen committed
1010
1011
1012
1013
1014
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
1015
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1016
1017
1018
1019
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
1045
1046
1047
1048
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
1049
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1050
1051
1052
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
1053

Patrick von Platen's avatar
Patrick von Platen committed
1054
1055
1056
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

1057
1058
1059
1060
1061
    def test_remote_components(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-components")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1062
        # Check that only loading custom components "my_unet", "my_scheduler" works
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "StableDiffusionXLPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1076
        # Check that only loading custom components "my_unet", "my_scheduler" and explicit custom pipeline works
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", custom_pipeline="my_pipeline", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

    def test_remote_auto_custom_pipe(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-all")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1095
        # Check that only loading custom components "my_unet", "my_scheduler" and auto custom pipeline works
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-all", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    def test_remote_custom_pipe_with_dot_in_name(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("akasharidas/ddpm-cifar10-32-dot.in.name")

        pipeline = DiffusionPipeline.from_pretrained("akasharidas/ddpm-cifar10-32-dot.in.name", trust_remote_code=True)

        assert pipeline.__class__.__name__ == "CustomPipeline"

        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
        assert output_str == "This is a test"

1124
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
1125
1126
1127
1128
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
1129
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1130
1131
1132
1133
1134
1135
1136
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1151
1152
1153
1154
1155
1156
1157
    def test_custom_model_and_pipeline(self):
        pipe = CustomPipeline(
            encoder=CustomEncoder(),
            scheduler=DDIMScheduler(),
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
1158
            pipe.save_pretrained(tmpdirname, safe_serialization=False)
1159
1160
1161
1162

            pipe_new = CustomPipeline.from_pretrained(tmpdirname)
            pipe_new.save_pretrained(tmpdirname)

1163
1164
1165
1166
1167
1168
        conf_1 = dict(pipe.config)
        conf_2 = dict(pipe_new.config)

        del conf_2["_name_or_path"]

        assert conf_1 == conf_2
1169

Patrick von Platen's avatar
Patrick von Platen committed
1170
    @slow
1171
    @require_torch_accelerator
1172
    def test_download_from_git(self):
1173
1174
        # Because adaptive_avg_pool2d_backward_cuda
        # does not have a deterministic implementation.
Patrick von Platen's avatar
Patrick von Platen committed
1175
1176
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

1177
        feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
1178
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
1179
1180
1181
1182
1183
1184

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
1185
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
1186
        )
1187
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    def test_save_pipeline_change_config(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"

        # let's make sure that changing the scheduler is correctly reflected
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"

Patrick von Platen's avatar
Patrick von Platen committed
1216

1217
class PipelineFastTests(unittest.TestCase):
1218
1219
1220
1221
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
1222
        backend_empty_cache(torch_device)
1223

1224
1225
1226
1227
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
1228
        backend_empty_cache(torch_device)
1229

1230
1231
1232
1233
1234
1235
1236
1237
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

1238
    def dummy_uncond_unet(self, sample_size=32):
1239
1240
1241
1242
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1243
            sample_size=sample_size,
1244
1245
1246
1247
1248
1249
1250
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

1251
    def dummy_cond_unet(self, sample_size=32):
1252
1253
1254
1255
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1256
            sample_size=sample_size,
1257
1258
1259
1260
1261
1262
1263
1264
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

1265
    @property
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

1278
    @property
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

1294
    @property
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

1309
1310
1311
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
1312
            [DDPMScheduler, DDPMPipeline, 32],
1313
            [DDIMScheduler, DDIMPipeline, (32, 64)],
1314
            [DDPMScheduler, DDPMPipeline, (64, 32)],
1315
1316
1317
1318
1319
1320
1321
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

1322
        generator = torch.manual_seed(0)
1323
1324
1325
1326
1327
1328
1329
1330
1331
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
1332
        """Test that components property works correctly"""
1333
        unet = self.dummy_cond_unet()
1334
        scheduler = PNDMScheduler(skip_prk_steps=True)
1335
1336
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
1337
1338
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

1339
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
1340
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
1341
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
1342
1343

        # make sure here that pndm scheduler skips prk
1344
        inpaint = StableDiffusionInpaintPipelineLegacy(
1345
1346
1347
1348
1349
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
1350
            safety_checker=None,
1351
            feature_extractor=self.dummy_extractor,
1352
        ).to(torch_device)
1353
1354
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components, image_encoder=None).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components, image_encoder=None).to(torch_device)
1355
1356

        prompt = "A painting of a squirrel eating a burger"
1357

1358
        generator = torch.manual_seed(0)
1359
        image_inpaint = inpaint(
1360
1361
1362
1363
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1364
            image=init_image,
1365
1366
1367
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
1368
1369
1370
1371
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1372
            image=init_image,
1373
1374
1375
        ).images
        image_text2img = text2img(
            [prompt],
1376
1377
1378
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1379
        ).images
1380

1381
1382
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
1383
        assert image_text2img.shape == (1, 64, 64, 3)
1384

1385
    @require_torch_accelerator
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1403
        sd.enable_model_cpu_offload(device=torch_device)
1404
1405
1406

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
1407
            sd.to(torch_device)
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1421
    def test_set_scheduler(self):
1422
        unet = self.dummy_cond_unet()
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
    def test_set_component_to_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        pipeline = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        generator = torch.Generator(device="cpu").manual_seed(0)

        prompt = "This is a flower"

        out_image = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        pipeline.feature_extractor = None
        generator = torch.Generator(device="cpu").manual_seed(0)
        out_image_2 = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        assert out_image.shape == (1, 64, 64, 3)
        assert np.abs(out_image - out_image_2).max() < 1e-3

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    def test_optional_components_is_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        items = {
            "feature_extractor": self.dummy_extractor,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": bert,
            "tokenizer": tokenizer,
            "safety_checker": None,
            # we don't add an image encoder
        }

        pipeline = StableDiffusionPipeline(**items)

        assert sorted(pipeline.components.keys()) == sorted(["image_encoder"] + list(items.keys()))
        assert pipeline.image_encoder is None

1516
    def test_set_scheduler_consistency(self):
1517
        unet = self.dummy_cond_unet()
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
1577
1578
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
1579
1580
1581
1582
1583
1584
1585
1586

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
1607
        use_safetensors = False
1608
1609
1610

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
1611
1612
1613
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                cache_dir=tmpdirname,
                use_safetensors=use_safetensors,
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    def test_name_or_path(self):
        model_path = "hf-internal-testing/tiny-stable-diffusion-torch"
        sd = DiffusionPipeline.from_pretrained(model_path)

        assert sd.name_or_path == model_path

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = DiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.name_or_path == tmpdirname

Sayak Paul's avatar
Sayak Paul committed
1744
    def test_error_no_variant_available(self):
1745
        variant = "fp16"
Sayak Paul's avatar
Sayak Paul committed
1746
        with self.assertRaises(ValueError) as error_context:
1747
            _ = StableDiffusionPipeline.from_pretrained(
1748
1749
1750
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
            )

Sayak Paul's avatar
Sayak Paul committed
1751
1752
        assert "but no such modeling files are available" in str(error_context.exception)
        assert variant in str(error_context.exception)
1753

1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
    def test_pipe_to(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        device_type = torch.device(torch_device).type

        sd1 = sd.to(device_type)
        sd2 = sd.to(torch.device(device_type))
        sd3 = sd.to(device_type, torch.float32)
        sd4 = sd.to(device=device_type)
        sd5 = sd.to(torch_device=device_type)
        sd6 = sd.to(device_type, dtype=torch.float32)
        sd7 = sd.to(device_type, torch_dtype=torch.float32)

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type
        assert sd4.device.type == device_type
        assert sd5.device.type == device_type
        assert sd6.device.type == device_type
        assert sd7.device.type == device_type

        sd1 = sd.to(torch.float16)
        sd2 = sd.to(None, torch.float16)
        sd3 = sd.to(dtype=torch.float16)
1792
        sd4 = sd.to(dtype=torch.float16)
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
        sd5 = sd.to(None, dtype=torch.float16)
        sd6 = sd.to(None, torch_dtype=torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16
        assert sd4.dtype == torch.float16
        assert sd5.dtype == torch.float16
        assert sd6.dtype == torch.float16

        sd1 = sd.to(device=device_type, dtype=torch.float16)
        sd2 = sd.to(torch_device=device_type, torch_dtype=torch.float16)
        sd3 = sd.to(device_type, torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type

    def test_pipe_same_device_id_offload(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1832
1833
1834
1835
1836
1837
        # `enable_model_cpu_offload` detects device type when not passed
        # `enable_model_cpu_offload` raises ValueError if detected device is `cpu`
        # This test only checks whether `_offload_gpu_id` is set correctly
        # So the device passed can be any supported `torch.device` type
        # This allows us to keep the test under `PipelineFastTests`
        sd.enable_model_cpu_offload(gpu_id=5, device="cuda")
1838
1839
1840
1841
        assert sd._offload_gpu_id == 5
        sd.maybe_free_model_hooks()
        assert sd._offload_gpu_id == 5

Marc Sun's avatar
Marc Sun committed
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
    @parameterized.expand([torch.float32, torch.float16])
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_load_dduf_from_hub(self, dtype):
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir, torch_dtype=dtype
            ).to(torch_device)
            out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images

            pipe.save_pretrained(tmpdir)
            loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir, torch_dtype=dtype).to(torch_device)

            out_2 = loaded_pipe(
                prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
            ).images

        self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))

    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_load_dduf_from_hub_local_files_only(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir
            ).to(torch_device)
            out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images

            local_files_pipe = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir, local_files_only=True
            ).to(torch_device)
            out_2 = local_files_pipe(
                prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
            ).images

        self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))

    def test_dduf_raises_error_with_custom_pipeline(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", custom_pipeline="my_pipeline"
            )

    def test_dduf_raises_error_with_connected_pipeline(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", load_connected_pipeline=True
            )

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
    def test_wrong_model(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        with self.assertRaises(ValueError) as error_context:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", text_encoder=tokenizer
            )

        assert "is of type" in str(error_context.exception)
        assert "but should be" in str(error_context.exception)

Marc Sun's avatar
Marc Sun committed
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_dduf_load_sharded_checkpoint_diffusion_model(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-flux-dev-pipe-sharded-checkpoint-DDUF",
                dduf_file="tiny-flux-dev-pipe-sharded-checkpoint.dduf",
                cache_dir=tmpdir,
            ).to(torch_device)

            out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images

            pipe.save_pretrained(tmpdir)
            loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir).to(torch_device)

            out_2 = loaded_pipe(
                prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
            ).images

        self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))

1922

1923
@slow
1924
@require_torch_accelerator
1925
class PipelineSlowTests(unittest.TestCase):
1926
1927
1928
1929
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
1930
        backend_empty_cache(torch_device)
1931

1932
1933
1934
1935
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
1936
        backend_empty_cache(torch_device)
1937

1938
1939
1940
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
1941
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1959
1960
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
1961
        logger = logging.get_logger("diffusers.pipelines")
1962
1963
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
1964
                DiffusionPipeline.from_pretrained(
1965
1966
1967
1968
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
1969
                )
1970

1971
        assert (
1972
1973
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
1974
        )
1975

1976
    def test_from_save_pretrained(self):
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
1999
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
2000
2001

        generator = torch.Generator(device=torch_device).manual_seed(0)
2002
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
2003

2004
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
2005

2006
    @is_torch_compile
2007
    @require_torch_2
2008
2009
2010
2011
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
2012
    def test_from_save_pretrained_dynamo(self):
2013
2014
2015
        torch.compiler.rest()
        with torch._inductor.utils.fresh_inductor_cache():
            run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None)
2016
2017
2018
2019

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

2020
        scheduler = DDPMScheduler(num_train_timesteps=10)
2021

2022
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
2023
        ddpm = ddpm.to(torch_device)
2024
        ddpm.set_progress_bar_config(disable=None)
2025

2026
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
2027
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
2028
        ddpm_from_hub.set_progress_bar_config(disable=None)
2029

2030
        generator = torch.Generator(device=torch_device).manual_seed(0)
2031
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
2032

2033
        generator = torch.Generator(device=torch_device).manual_seed(0)
2034
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
2035

2036
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
2037
2038
2039
2040

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

2041
2042
        scheduler = DDPMScheduler(num_train_timesteps=10)

2043
        # pass unet into DiffusionPipeline
2044
2045
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
2046
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
2047
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
2048

2049
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
2050
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
2051
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
2052

2053
        generator = torch.Generator(device=torch_device).manual_seed(0)
2054
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="np").images
2055

2056
        generator = torch.Generator(device=torch_device).manual_seed(0)
2057
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
2058

2059
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
2060
2061
2062
2063

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

2064
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
2065
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
2066
        pipe.to(torch_device)
2067
        pipe.set_progress_bar_config(disable=None)
2068

2069
        images = pipe(output_type="np").images
2070
2071
2072
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

2073
        images = pipe(output_type="pil", num_inference_steps=4).images
2074
2075
2076
2077
2078
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
2079
        images = pipe(num_inference_steps=4).images
2080
2081
2082
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

2083
    @require_flax
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

2124
2125
2126
2127
2128
2129
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
2130
        pipe.enable_model_cpu_offload(device=torch_device)
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
2144
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="np"
2145
2146
2147
2148
2149
2150
2151
2152
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

2153
            assert np.abs(image - expected_image).max() < 3e-1
2154

2155
2156

@nightly
2157
@require_torch_accelerator
2158
class PipelineNightlyTests(unittest.TestCase):
2159
2160
2161
2162
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
2163
        backend_empty_cache(torch_device)
2164

2165
2166
2167
2168
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
2169
        backend_empty_cache(torch_device)
2170

2171
2172
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
2173
        model_id = "google/ddpm-cifar10-32"
2174

2175
        unet = UNet2DModel.from_pretrained(model_id)
2176
2177
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
2178

2179
2180
2181
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
2182

2183
2184
2185
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
2186

2187
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2188
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="np").images
2189

2190
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2191
        ddim_images = ddim(
2192
            batch_size=2,
2193
2194
2195
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
2196
            output_type="np",
2197
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
2198
        ).images
2199

2200
2201
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226


@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
@is_torch_compile
class TestLoraHotSwappingForPipeline(unittest.TestCase):
    """Test that hotswapping does not result in recompilation in a pipeline.

    We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
    tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
    recompilation.

    See
    https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
    for the analogous PEFT test.

    """

    def tearDown(self):
        # It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
        # there will be recompilation errors, as torch caches the model when run in the same process.
        super().tearDown()
2227
        torch.compiler.reset()
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
        gc.collect()
        backend_empty_cache(torch_device)

    def get_unet_lora_config(self, lora_rank, lora_alpha, target_modules):
        # from diffusers test_models_unet_2d_condition.py
        from peft import LoraConfig

        unet_lora_config = LoraConfig(
            r=lora_rank,
            lora_alpha=lora_alpha,
            target_modules=target_modules,
            init_lora_weights=False,
            use_dora=False,
        )
        return unet_lora_config

    def get_lora_state_dicts(self, modules_to_save, adapter_name):
        from peft import get_peft_model_state_dict

        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(
                    module, adapter_name=adapter_name
                )
        return state_dicts

    def get_dummy_input(self):
        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
            "return_dict": False,
        }
        return pipeline_inputs

    def check_pipeline_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
        """
        Check that hotswapping works on a pipeline.

        Steps:
        - create 2 LoRA adapters and save them
        - load the first adapter
        - hotswap the second adapter
        - check that the outputs are correct
        - optionally compile the model

        Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
        fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
        fine.
        """
        # create 2 adapters with different ranks and alphas
        dummy_input = self.get_dummy_input()
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        alpha0, alpha1 = rank0, rank1
        max_rank = max([rank0, rank1])
        if target_modules1 is None:
            target_modules1 = target_modules0[:]
        lora_config0 = self.get_unet_lora_config(rank0, alpha0, target_modules0)
        lora_config1 = self.get_unet_lora_config(rank1, alpha1, target_modules1)

        torch.manual_seed(0)
        pipeline.unet.add_adapter(lora_config0, adapter_name="adapter0")
        output0_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

        torch.manual_seed(1)
        pipeline.unet.add_adapter(lora_config1, adapter_name="adapter1")
        pipeline.unet.set_adapter("adapter1")
        output1_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

        # sanity check
        tol = 1e-3
        assert not np.allclose(output0_before, output1_before, atol=tol, rtol=tol)
        assert not (output0_before == 0).all()
        assert not (output1_before == 0).all()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
            lora0_state_dicts = self.get_lora_state_dicts({"unet": pipeline.unet}, adapter_name="adapter0")
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, **lora0_state_dicts
            )
            lora1_state_dicts = self.get_lora_state_dicts({"unet": pipeline.unet}, adapter_name="adapter1")
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, **lora1_state_dicts
            )
            del pipeline

            # load the first adapter
            pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
            if do_compile or (rank0 != rank1):
                # no need to prepare if the model is not compiled or if the ranks are identical
                pipeline.enable_lora_hotswap(target_rank=max_rank)

            file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")

            pipeline.load_lora_weights(file_name0)
            if do_compile:
                pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead")

            output0_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

            # sanity check: still same result
            assert np.allclose(output0_before, output0_after, atol=tol, rtol=tol)

            # hotswap the 2nd adapter
            pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")
            output1_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

            # sanity check: since it's the same LoRA, the results should be identical
            assert np.allclose(output1_before, output1_after, atol=tol, rtol=tol)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_pipeline(self, rank0, rank1):
        self.check_pipeline_hotswap(
            do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
        )

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_pipline_linear(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
2352
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2353
2354
2355
2356
2357
2358
            self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_pipline_conv2d(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["conv", "conv1", "conv2"]
2359
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2360
2361
2362
2363
2364
2365
            self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_pipline_both_linear_and_conv2d(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "conv"]
2366
        with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
            self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
        with self.assertRaisesRegex(RuntimeError, msg):
            pipeline.enable_lora_hotswap(target_rank=32)

    def test_enable_lora_hotswap_called_after_adapter_added_warns(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        from diffusers.loaders.peft import logger

        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        msg = (
            "It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
        )
        with self.assertLogs(logger=logger, level="WARNING") as cm:
            pipeline.enable_lora_hotswap(target_rank=32, check_compiled="warn")
            assert any(msg in log for log in cm.output)

    def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
        # check possibility to ignore the error/warning
        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")  # Capture all warnings
            pipeline.enable_lora_hotswap(target_rank=32, check_compiled="warn")
            self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")

    def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
        # check that wrong argument value raises an error
        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
        with self.assertRaisesRegex(ValueError, msg):
            pipeline.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")

    def test_hotswap_second_adapter_targets_more_layers_raises(self):
        # check the error and log
        from diffusers.loaders.peft import logger

        # at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
        target_modules0 = ["to_q"]
        target_modules1 = ["to_q", "to_k"]
        with self.assertRaises(RuntimeError):  # peft raises RuntimeError
            with self.assertLogs(logger=logger, level="ERROR") as cm:
                self.check_pipeline_hotswap(
                    do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
                )
                assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)

    def test_hotswap_component_not_supported_raises(self):
        # right now, not some components don't support hotswapping, e.g. the text_encoder
        from peft import LoraConfig

        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        lora_config0 = LoraConfig(target_modules=["q_proj"])
        lora_config1 = LoraConfig(target_modules=["q_proj"])

        pipeline.text_encoder.add_adapter(lora_config0, adapter_name="adapter0")
        pipeline.text_encoder.add_adapter(lora_config1, adapter_name="adapter1")

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
            lora0_state_dicts = self.get_lora_state_dicts(
                {"text_encoder": pipeline.text_encoder}, adapter_name="adapter0"
            )
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, **lora0_state_dicts
            )
            lora1_state_dicts = self.get_lora_state_dicts(
                {"text_encoder": pipeline.text_encoder}, adapter_name="adapter1"
            )
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, **lora1_state_dicts
            )
            del pipeline

            # load the first adapter
            pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
            file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")

            pipeline.load_lora_weights(file_name0)
            msg = re.escape(
                "At the moment, hotswapping is not supported for text encoders, please pass `hotswap=False`"
            )
            with self.assertRaisesRegex(ValueError, msg):
                pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")