test_pipelines.py 107 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import re
21
import shutil
22
import sys
23
import tempfile
24
import traceback
25
import unittest
26
import unittest.mock as mock
27
import warnings
28
29

import numpy as np
Anh71me's avatar
Anh71me committed
30
import PIL.Image
31
import requests_mock
32
import safetensors.torch
33
import torch
34
import torch.nn as nn
35
from huggingface_hub import snapshot_download
36
37
from parameterized import parameterized
from PIL import Image
38
from requests.exceptions import HTTPError
39
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
40

41
from diffusers import (
42
    AutoencoderKL,
43
    ConfigMixin,
44
45
46
47
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
48
    DiffusionPipeline,
49
50
51
52
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
53
    ModelMixin,
54
    PNDMScheduler,
55
    StableDiffusionImg2ImgPipeline,
56
    StableDiffusionInpaintPipelineLegacy,
57
    StableDiffusionPipeline,
58
    UNet2DConditionModel,
59
    UNet2DModel,
60
    UniPCMultistepScheduler,
61
    logging,
62
)
Sayak Paul's avatar
Sayak Paul committed
63
from diffusers.pipelines.pipeline_utils import _get_pipeline_class
64
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
65
66
67
68
from diffusers.utils import (
    CONFIG_NAME,
    WEIGHTS_NAME,
)
69
70
from diffusers.utils.testing_utils import (
    CaptureLogger,
71
    backend_empty_cache,
72
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
73
    floats_tensor,
74
    get_python_version,
75
    get_tests_dir,
76
    is_torch_compile,
77
    load_numpy,
Dhruv Nair's avatar
Dhruv Nair committed
78
    nightly,
79
80
    require_compel,
    require_flax,
Marc Sun's avatar
Marc Sun committed
81
    require_hf_hub_version_greater,
82
    require_onnxruntime,
83
84
    require_peft_backend,
    require_peft_version_greater,
Dhruv Nair's avatar
Dhruv Nair committed
85
    require_torch_2,
86
    require_torch_accelerator,
Marc Sun's avatar
Marc Sun committed
87
    require_transformers_version_greater,
88
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
89
90
    slow,
    torch_device,
91
)
Dhruv Nair's avatar
Dhruv Nair committed
92
from diffusers.utils.torch_utils import is_compiled_module
93
94


95
enable_full_determinism()
96
97


98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        model = torch.compile(model)
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
116
117
118
119
120

        # previous diffusers versions stripped compilation off
        # compiled modules
        assert is_compiled_module(ddpm.unet)

121
122
123
124
125
126
127
128
129
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
130
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
131
132

        generator = torch.Generator(device=torch_device).manual_seed(0)
133
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
134

135
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
136
137
138
139
140
141
142
143
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


144
145
146
class CustomEncoder(ModelMixin, ConfigMixin):
    def __init__(self):
        super().__init__()
147
        self.linear = nn.Linear(3, 3)
148
149
150
151
152
153
154
155


class CustomPipeline(DiffusionPipeline):
    def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler):
        super().__init__()
        self.register_modules(encoder=encoder, scheduler=scheduler)


156
class DownloadTests(unittest.TestCase):
157
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
158
159
160
161
162
163
164
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
165
                DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
166
167

            download_requests = [r.method for r in m.request_history]
168
            assert download_requests.count("HEAD") == 15, "15 calls to files"
169
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
170
171
172
            assert len(download_requests) == 32, (
                "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"
            )
173
174
175
176
177
178
179

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
180
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
181
            assert cache_requests.count("GET") == 1, "model info is only GET"
182
183
184
            assert len(cache_requests) == 2, (
                "We should call only `model_info` to check for _commit hash and `send_telemetry`"
            )
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def test_less_downloads_passed_object(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            cached_folder = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            # make sure safety checker is not downloaded
            assert "safety_checker" not in os.listdir(cached_folder)

            # make sure rest is downloaded
            assert "unet" in os.listdir(cached_folder)
            assert "tokenizer" in os.listdir(cached_folder)
            assert "vae" in os.listdir(cached_folder)
            assert "model_index.json" in os.listdir(cached_folder)
            assert "scheduler" in os.listdir(cached_folder)
            assert "feature_extractor" in os.listdir(cached_folder)

203
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def test_less_downloads_passed_object_calls(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            # 15 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("HEAD") == 13, "13 calls to files"
            # 17 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
220
221
222
            assert len(download_requests) == 28, (
                "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"
            )
223
224
225
226
227
228
229
230
231

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
            assert cache_requests.count("GET") == 1, "model info is only GET"
232
233
234
            assert len(cache_requests) == 2, (
                "We should call only `model_info` to check for _commit hash and `send_telemetry`"
            )
235

236
237
238
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
239
            tmpdirname = DiffusionPipeline.download(
240
241
242
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

243
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
244
245
246
247
248
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
249
250
251
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

252
253
254
255
256
257
258
259
260
261
262
    def test_force_safetensors_error(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            with self.assertRaises(EnvironmentError):
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
                    safety_checker=None,
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                )

263
264
265
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
266
            tmpdirname = DiffusionPipeline.download(
267
268
269
270
271
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

272
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
273
274
275
276
277
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def test_download_safetensors_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "safetensors" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".safetensors" in f]) == 8
                assert not any(".bin" in f for f in files)

    def test_download_bin_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=False,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "bin" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".bin" in f]) == 8
                assert not any(".safetensors" in f for f in files)

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    def test_download_no_openvino_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-open-vino",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # make sure that by default no openvino weights are downloaded
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any("openvino_" in f for f in files)

    def test_download_no_onnx_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
344
                "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
345
                cache_dir=tmpdirname,
346
                use_safetensors=False,
347
348
349
350
351
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

352
            # make sure that by default no onnx weights are downloaded for non-ONNX pipelines
353
354
355
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any((f.endswith(".onnx") or f.endswith(".pb")) for f in files)

356
357
    @require_onnxruntime
    def test_download_onnx_by_default_for_onnx_pipelines(self):
358
359
360
361
362
363
364
365
366
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

367
            # make sure that by default onnx weights are downloaded for ONNX pipelines
368
369
370
371
            assert any((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert any((f.endswith(".onnx")) for f in files)
            assert any((f.endswith(".pb")) for f in files)

372
373
374
375
376
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
377
        pipe = pipe.to(torch_device)
378
        generator = torch.manual_seed(0)
379
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
380
381

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
382
        pipe_2 = pipe_2.to(torch_device)
383
        generator = torch.manual_seed(0)
384
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
385
386
387
388
389
390
391
392

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
393
        pipe = pipe.to(torch_device)
394
        generator = torch.manual_seed(0)
395
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
396
397
398
399

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
400
            pipe_2 = pipe_2.to(torch_device)
401

402
            generator = torch.manual_seed(0)
403

404
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
405
406
407
408
409
410

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
411
        pipe = pipe.to(torch_device)
412
413

        generator = torch.manual_seed(0)
414
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
415
416
417
418

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
419
            pipe_2 = pipe_2.to(torch_device)
420

421
            generator = torch.manual_seed(0)
422

423
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
424
425
426

        assert np.max(np.abs(out - out_2)) < 1e-3

427
428
429
430
431
432
433
434
435
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
436
        orig_pipe = DiffusionPipeline.from_pretrained(
437
438
439
440
441
442
443
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
444
            pipe = DiffusionPipeline.from_pretrained(
445
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
446
447
448
449
450
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_local_files_only_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # first check that with local files only the pipeline can only be used if cached
        with self.assertRaises(FileNotFoundError):
            with tempfile.TemporaryDirectory() as tmpdirname:
                orig_pipe = DiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True, cache_dir=tmpdirname
                )

        # now download
        orig_pipe = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-torch")

        # make sure it can be loaded with local_files_only
        orig_pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to connect to the internet.
        # Make sure it works local_files_only only works here!
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
487
488
489
490
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
491
492
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
493
            with tempfile.TemporaryDirectory() as tmpdirname:
494
                tmpdirname = StableDiffusionPipeline.download(
495
496
497
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
498
                )
499
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
500
501
502
503
504
505
506
507
508
509
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

    def test_download_variant_all(self):
510
511
512
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
513
514
515
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
516
                tmpdirname = StableDiffusionPipeline.download(
517
518
519
520
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
521
                )
522
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
523
524
525
526
527
528
529
530
531
532
533
534
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

    def test_download_variant_partly(self):
535
536
537
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
538
539
540
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
541
                tmpdirname = StableDiffusionPipeline.download(
542
543
544
545
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
546
                )
547
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
548
549
                files = [item for sublist in all_root_files for item in sublist]

550
                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
551
552
553
554
555
556
557
558
559
560
561

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    def test_download_variants_with_sharded_checkpoints(self):
        # Here we test for downloading of "variant" files belonging to the `unet` and
        # the `text_encoder`. Their checkpoints can be sharded.
        for use_safetensors in [True, False]:
            for variant in ["fp16", None]:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = DiffusionPipeline.download(
                        "hf-internal-testing/tiny-stable-diffusion-pipe-variants-right-format",
                        safety_checker=None,
                        cache_dir=tmpdirname,
                        variant=variant,
                        use_safetensors=use_safetensors,
                    )

                    all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                    files = [item for sublist in all_root_files for item in sublist]

                    # Check for `model_ext` and `variant`.
                    model_ext = ".safetensors" if use_safetensors else ".bin"
                    unexpected_ext = ".bin" if use_safetensors else ".safetensors"
                    model_files = [f for f in files if f.endswith(model_ext)]
                    assert not any(f.endswith(unexpected_ext) for f in files)
                    assert all(variant in f for f in model_files if f.endswith(model_ext) and variant is not None)

    def test_download_legacy_variants_with_sharded_ckpts_raises_warning(self):
        repo_id = "hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds"
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        deprecated_warning_msg = "Warning: The repository contains sharded checkpoints for variant"

        for is_local in [True, False]:
            with CaptureLogger(logger) as cap_logger:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    local_repo_id = repo_id
                    if is_local:
                        local_repo_id = snapshot_download(repo_id, cache_dir=tmpdirname)

                    _ = DiffusionPipeline.from_pretrained(
                        local_repo_id,
                        safety_checker=None,
                        variant="fp16",
                        use_safetensors=True,
                    )
            assert deprecated_warning_msg in str(cap_logger), "Deprecation warning not found in logs"

606
607
608
609
610
611
612
613
    def test_download_safetensors_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = True

        # text encoder is missing no variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
614
                    "hf-internal-testing/stable-diffusion-broken-variants",
615
616
                    cache_dir=tmpdirname,
                    variant=variant,
617
                    use_safetensors=use_safetensors,
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
                )
            assert "Error no file name" in str(error_context.exception)

        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"

    def test_download_bin_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = False

        # text encoder is missing Non-variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
644
                    cache_dir=tmpdirname,
645
646
                    variant=variant,
                    use_safetensors=use_safetensors,
647
                )
648
            assert "Error no file name" in str(error_context.exception)
649

650
651
652
653
654
655
656
657
658
659
660
661
662
        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
    def test_download_safetensors_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = True

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )

            assert "Error no file name" in str(error_context.exception)

    def test_download_bin_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = False

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )
            assert "Error no file name" in str(error_context.exception)
694

695
696
697
698
699
700
701
702
703
704
705
706
    def test_local_save_load_index(self):
        prompt = "hello"
        for variant in [None, "fp16"]:
            for use_safe in [True, False]:
                pipe = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    variant=variant,
                    use_safetensors=use_safe,
                    safety_checker=None,
                )
                pipe = pipe.to(torch_device)
                generator = torch.manual_seed(0)
707
                out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
708
709

                with tempfile.TemporaryDirectory() as tmpdirname:
710
                    pipe.save_pretrained(tmpdirname, variant=variant, safe_serialization=use_safe)
711
712
713
714
715
716
717
                    pipe_2 = StableDiffusionPipeline.from_pretrained(
                        tmpdirname, safe_serialization=use_safe, variant=variant
                    )
                    pipe_2 = pipe_2.to(torch_device)

                generator = torch.manual_seed(0)

718
                out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
719
720
721

                assert np.max(np.abs(out - out_2)) < 1e-3

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
    def test_text_inversion_download(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe = pipe.to(torch_device)

        num_tokens = len(pipe.tokenizer)

        # single token load local
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<*>": torch.ones((32,))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<*>")
            assert token == num_tokens, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
            assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"

            prompt = "hey <*>"
743
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
            assert out.shape == (1, 128, 128, 3)

        # single token load local with weight name
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<**>": 2 * torch.ones((1, 32))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<**>")
            assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
            assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"

            prompt = "hey <**>"
759
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
            assert out.shape == (1, 128, 128, 3)

        # multi token load
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<***>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")

            assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
779
            assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
780
781

            prompt = "hey <***>"
782
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
            assert out.shape == (1, 128, 128, 3)

        # multi token load a1111
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {
                "string_to_param": {
                    "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
                },
                "name": "<****>",
            }
            torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<****>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")

            assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
807
            assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
808
809

            prompt = "hey <****>"
810
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
811
812
            assert out.shape == (1, 128, 128, 3)

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
        # multi embedding load
        with tempfile.TemporaryDirectory() as tmpdirname1:
            with tempfile.TemporaryDirectory() as tmpdirname2:
                ten = {"<*****>": torch.ones((32,))}
                torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))

                ten = {"<******>": 2 * torch.ones((1, 32))}
                torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))

                pipe.load_textual_inversion([tmpdirname1, tmpdirname2])

                token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
                assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
                assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"

                token = pipe.tokenizer.convert_tokens_to_ids("<******>")
                assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
                assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"

                prompt = "hey <*****> <******>"
835
                out = pipe(prompt, num_inference_steps=1, output_type="np").images
836
837
                assert out.shape == (1, 128, 128, 3)

838
839
840
841
842
843
844
845
846
847
        # single token state dict load
        ten = {"<x>": torch.ones((32,))}
        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<x>")
        assert token == num_tokens + 10, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
        assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>"

        prompt = "hey <x>"
848
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
        assert out.shape == (1, 128, 128, 3)

        # multi embedding state dict load
        ten1 = {"<xxxxx>": torch.ones((32,))}
        ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))}

        pipe.load_textual_inversion([ten1, ten2])

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>")
        assert token == num_tokens + 11, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
        assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>"

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>")
        assert token == num_tokens + 12, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
        assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>"

        prompt = "hey <xxxxx> <xxxxxx>"
868
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        assert out.shape == (1, 128, 128, 3)

        # auto1111 multi-token state dict load
        ten = {
            "string_to_param": {
                "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
            },
            "name": "<xxxx>",
        }

        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>")
        token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1")
        token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2")

        assert token == num_tokens + 13, "Added token must be at spot `num_tokens`"
        assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`"
        assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
        assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2"

        prompt = "hey <xxxx>"
894
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
895
896
        assert out.shape == (1, 128, 128, 3)

897
898
899
900
901
902
903
904
905
        # multiple references to multi embedding
        ten = {"<cat>": torch.ones(3, 32)}
        pipe.load_textual_inversion(ten)

        assert (
            pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2"
        )

        prompt = "hey <cat> <cat>"
906
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
907
908
        assert out.shape == (1, 128, 128, 3)

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    def test_text_inversion_multi_tokens(self):
        pipe1 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe1 = pipe1.to(torch_device)

        token1, token2 = "<*>", "<**>"
        ten1 = torch.ones((32,))
        ten2 = torch.ones((32,)) * 2

        num_tokens = len(pipe1.tokenizer)

        pipe1.load_textual_inversion(ten1, token=token1)
        pipe1.load_textual_inversion(ten2, token=token2)
        emb1 = pipe1.text_encoder.get_input_embeddings().weight

        pipe2 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe2 = pipe2.to(torch_device)
        pipe2.load_textual_inversion([ten1, ten2], token=[token1, token2])
        emb2 = pipe2.text_encoder.get_input_embeddings().weight

        pipe3 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe3 = pipe3.to(torch_device)
        pipe3.load_textual_inversion(torch.stack([ten1, ten2], dim=0), token=[token1, token2])
        emb3 = pipe3.text_encoder.get_input_embeddings().weight

        assert len(pipe1.tokenizer) == len(pipe2.tokenizer) == len(pipe3.tokenizer) == num_tokens + 2
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token1)
            == pipe2.tokenizer.convert_tokens_to_ids(token1)
            == pipe3.tokenizer.convert_tokens_to_ids(token1)
            == num_tokens
        )
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token2)
            == pipe2.tokenizer.convert_tokens_to_ids(token2)
            == pipe3.tokenizer.convert_tokens_to_ids(token2)
            == num_tokens + 1
        )
        assert emb1[num_tokens].sum().item() == emb2[num_tokens].sum().item() == emb3[num_tokens].sum().item()
        assert (
            emb1[num_tokens + 1].sum().item() == emb2[num_tokens + 1].sum().item() == emb3[num_tokens + 1].sum().item()
        )

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    def test_textual_inversion_unload(self):
        pipe1 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe1 = pipe1.to(torch_device)
        orig_tokenizer_size = len(pipe1.tokenizer)
        orig_emb_size = len(pipe1.text_encoder.get_input_embeddings().weight)

        token = "<*>"
        ten = torch.ones((32,))
        pipe1.load_textual_inversion(ten, token=token)
        pipe1.unload_textual_inversion()
        pipe1.load_textual_inversion(ten, token=token)
        pipe1.unload_textual_inversion()

        final_tokenizer_size = len(pipe1.tokenizer)
        final_emb_size = len(pipe1.text_encoder.get_input_embeddings().weight)
        # both should be restored to original size
        assert final_tokenizer_size == orig_tokenizer_size
        assert final_emb_size == orig_emb_size

Patrick von Platen's avatar
Patrick von Platen committed
978
979
980
981
982
983
984
985
986
987
988
989
990
    def test_download_ignore_files(self):
        # Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
            assert len(files) == 14

Marc Sun's avatar
Marc Sun committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
    def test_download_dduf_with_custom_pipeline_raises_error(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.download(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", custom_pipeline="my_pipeline"
            )

    def test_download_dduf_with_connected_pipeline_raises_error(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.download(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", load_connected_pipeline=True
            )

1003
1004
1005
1006
1007
1008
1009
1010
    def test_get_pipeline_class_from_flax(self):
        flax_config = {"_class_name": "FlaxStableDiffusionPipeline"}
        config = {"_class_name": "StableDiffusionPipeline"}

        # when loading a PyTorch Pipeline from a FlaxPipeline `model_index.json`, e.g.: https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-lms-pipe/blob/7a9063578b325779f0f1967874a6771caa973cad/model_index.json#L2
        # we need to make sure that we don't load the Flax Pipeline class, but instead the PyTorch pipeline class
        assert _get_pipeline_class(DiffusionPipeline, flax_config) == _get_pipeline_class(DiffusionPipeline, config)

1011

Patrick von Platen's avatar
Patrick von Platen committed
1012
1013
1014
1015
1016
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
1017
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1018
1019
1020
1021
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
1047
1048
1049
1050
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
1051
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1052
1053
1054
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
1055

Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

1059
1060
1061
1062
1063
    def test_remote_components(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-components")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1064
        # Check that only loading custom components "my_unet", "my_scheduler" works
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "StableDiffusionXLPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1078
        # Check that only loading custom components "my_unet", "my_scheduler" and explicit custom pipeline works
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", custom_pipeline="my_pipeline", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

    def test_remote_auto_custom_pipe(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-all")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1097
        # Check that only loading custom components "my_unet", "my_scheduler" and auto custom pipeline works
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-all", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

1111
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
1112
1113
1114
1115
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
1116
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1117
1118
1119
1120
1121
1122
1123
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1138
1139
1140
1141
1142
1143
1144
    def test_custom_model_and_pipeline(self):
        pipe = CustomPipeline(
            encoder=CustomEncoder(),
            scheduler=DDIMScheduler(),
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
1145
            pipe.save_pretrained(tmpdirname, safe_serialization=False)
1146
1147
1148
1149

            pipe_new = CustomPipeline.from_pretrained(tmpdirname)
            pipe_new.save_pretrained(tmpdirname)

1150
1151
1152
1153
1154
1155
        conf_1 = dict(pipe.config)
        conf_2 = dict(pipe_new.config)

        del conf_2["_name_or_path"]

        assert conf_1 == conf_2
1156

Patrick von Platen's avatar
Patrick von Platen committed
1157
    @slow
1158
    @require_torch_accelerator
1159
    def test_download_from_git(self):
1160
1161
        # Because adaptive_avg_pool2d_backward_cuda
        # does not have a deterministic implementation.
Patrick von Platen's avatar
Patrick von Platen committed
1162
1163
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

1164
        feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
1165
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
1166
1167
1168
1169
1170
1171

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
1172
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
1173
        )
1174
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    def test_save_pipeline_change_config(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"

        # let's make sure that changing the scheduler is correctly reflected
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"

Patrick von Platen's avatar
Patrick von Platen committed
1203

1204
class PipelineFastTests(unittest.TestCase):
1205
1206
1207
1208
1209
1210
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1211
1212
1213
1214
1215
1216
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1217
1218
1219
1220
1221
1222
1223
1224
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

1225
    def dummy_uncond_unet(self, sample_size=32):
1226
1227
1228
1229
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1230
            sample_size=sample_size,
1231
1232
1233
1234
1235
1236
1237
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

1238
    def dummy_cond_unet(self, sample_size=32):
1239
1240
1241
1242
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1243
            sample_size=sample_size,
1244
1245
1246
1247
1248
1249
1250
1251
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

1252
    @property
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

1265
    @property
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

1281
    @property
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

1296
1297
1298
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
1299
            [DDPMScheduler, DDPMPipeline, 32],
1300
            [DDIMScheduler, DDIMPipeline, (32, 64)],
1301
            [DDPMScheduler, DDPMPipeline, (64, 32)],
1302
1303
1304
1305
1306
1307
1308
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

1309
        generator = torch.manual_seed(0)
1310
1311
1312
1313
1314
1315
1316
1317
1318
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
1319
        """Test that components property works correctly"""
1320
        unet = self.dummy_cond_unet()
1321
        scheduler = PNDMScheduler(skip_prk_steps=True)
1322
1323
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
1324
1325
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

1326
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
1327
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
1328
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
1329
1330

        # make sure here that pndm scheduler skips prk
1331
        inpaint = StableDiffusionInpaintPipelineLegacy(
1332
1333
1334
1335
1336
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
1337
            safety_checker=None,
1338
            feature_extractor=self.dummy_extractor,
1339
        ).to(torch_device)
1340
1341
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components, image_encoder=None).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components, image_encoder=None).to(torch_device)
1342
1343

        prompt = "A painting of a squirrel eating a burger"
1344

1345
        generator = torch.manual_seed(0)
1346
        image_inpaint = inpaint(
1347
1348
1349
1350
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1351
            image=init_image,
1352
1353
1354
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
1355
1356
1357
1358
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1359
            image=init_image,
1360
1361
1362
        ).images
        image_text2img = text2img(
            [prompt],
1363
1364
1365
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1366
        ).images
1367

1368
1369
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
1370
        assert image_text2img.shape == (1, 64, 64, 3)
1371

1372
    @require_torch_accelerator
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1390
        sd.enable_model_cpu_offload(device=torch_device)
1391
1392
1393

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
1394
            sd.to(torch_device)
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1408
    def test_set_scheduler(self):
1409
        unet = self.dummy_cond_unet()
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    def test_set_component_to_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        pipeline = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        generator = torch.Generator(device="cpu").manual_seed(0)

        prompt = "This is a flower"

        out_image = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        pipeline.feature_extractor = None
        generator = torch.Generator(device="cpu").manual_seed(0)
        out_image_2 = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        assert out_image.shape == (1, 64, 64, 3)
        assert np.abs(out_image - out_image_2).max() < 1e-3

1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
    def test_optional_components_is_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        items = {
            "feature_extractor": self.dummy_extractor,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": bert,
            "tokenizer": tokenizer,
            "safety_checker": None,
            # we don't add an image encoder
        }

        pipeline = StableDiffusionPipeline(**items)

        assert sorted(pipeline.components.keys()) == sorted(["image_encoder"] + list(items.keys()))
        assert pipeline.image_encoder is None

1503
    def test_set_scheduler_consistency(self):
1504
        unet = self.dummy_cond_unet()
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
1564
1565
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
1566
1567
1568
1569
1570
1571
1572
1573

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
1594
        use_safetensors = False
1595
1596
1597

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
1598
1599
1600
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                cache_dir=tmpdirname,
                use_safetensors=use_safetensors,
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
    def test_name_or_path(self):
        model_path = "hf-internal-testing/tiny-stable-diffusion-torch"
        sd = DiffusionPipeline.from_pretrained(model_path)

        assert sd.name_or_path == model_path

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = DiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.name_or_path == tmpdirname

Sayak Paul's avatar
Sayak Paul committed
1731
    def test_error_no_variant_available(self):
1732
        variant = "fp16"
Sayak Paul's avatar
Sayak Paul committed
1733
        with self.assertRaises(ValueError) as error_context:
1734
            _ = StableDiffusionPipeline.from_pretrained(
1735
1736
1737
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
            )

Sayak Paul's avatar
Sayak Paul committed
1738
1739
        assert "but no such modeling files are available" in str(error_context.exception)
        assert variant in str(error_context.exception)
1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
    def test_pipe_to(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        device_type = torch.device(torch_device).type

        sd1 = sd.to(device_type)
        sd2 = sd.to(torch.device(device_type))
        sd3 = sd.to(device_type, torch.float32)
        sd4 = sd.to(device=device_type)
        sd5 = sd.to(torch_device=device_type)
        sd6 = sd.to(device_type, dtype=torch.float32)
        sd7 = sd.to(device_type, torch_dtype=torch.float32)

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type
        assert sd4.device.type == device_type
        assert sd5.device.type == device_type
        assert sd6.device.type == device_type
        assert sd7.device.type == device_type

        sd1 = sd.to(torch.float16)
        sd2 = sd.to(None, torch.float16)
        sd3 = sd.to(dtype=torch.float16)
1779
        sd4 = sd.to(dtype=torch.float16)
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
        sd5 = sd.to(None, dtype=torch.float16)
        sd6 = sd.to(None, torch_dtype=torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16
        assert sd4.dtype == torch.float16
        assert sd5.dtype == torch.float16
        assert sd6.dtype == torch.float16

        sd1 = sd.to(device=device_type, dtype=torch.float16)
        sd2 = sd.to(torch_device=device_type, torch_dtype=torch.float16)
        sd3 = sd.to(device_type, torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type

    def test_pipe_same_device_id_offload(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1819
1820
1821
1822
1823
1824
        # `enable_model_cpu_offload` detects device type when not passed
        # `enable_model_cpu_offload` raises ValueError if detected device is `cpu`
        # This test only checks whether `_offload_gpu_id` is set correctly
        # So the device passed can be any supported `torch.device` type
        # This allows us to keep the test under `PipelineFastTests`
        sd.enable_model_cpu_offload(gpu_id=5, device="cuda")
1825
1826
1827
1828
        assert sd._offload_gpu_id == 5
        sd.maybe_free_model_hooks()
        assert sd._offload_gpu_id == 5

Marc Sun's avatar
Marc Sun committed
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
    @parameterized.expand([torch.float32, torch.float16])
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_load_dduf_from_hub(self, dtype):
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir, torch_dtype=dtype
            ).to(torch_device)
            out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images

            pipe.save_pretrained(tmpdir)
            loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir, torch_dtype=dtype).to(torch_device)

            out_2 = loaded_pipe(
                prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
            ).images

        self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))

    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_load_dduf_from_hub_local_files_only(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir
            ).to(torch_device)
            out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images

            local_files_pipe = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir, local_files_only=True
            ).to(torch_device)
            out_2 = local_files_pipe(
                prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
            ).images

        self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))

    def test_dduf_raises_error_with_custom_pipeline(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", custom_pipeline="my_pipeline"
            )

    def test_dduf_raises_error_with_connected_pipeline(self):
        with self.assertRaises(NotImplementedError):
            _ = DiffusionPipeline.from_pretrained(
                "DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", load_connected_pipeline=True
            )

1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
    def test_wrong_model(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        with self.assertRaises(ValueError) as error_context:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", text_encoder=tokenizer
            )

        assert "is of type" in str(error_context.exception)
        assert "but should be" in str(error_context.exception)

Marc Sun's avatar
Marc Sun committed
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_dduf_load_sharded_checkpoint_diffusion_model(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe = DiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-flux-dev-pipe-sharded-checkpoint-DDUF",
                dduf_file="tiny-flux-dev-pipe-sharded-checkpoint.dduf",
                cache_dir=tmpdir,
            ).to(torch_device)

            out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images

            pipe.save_pretrained(tmpdir)
            loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir).to(torch_device)

            out_2 = loaded_pipe(
                prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
            ).images

        self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))

1909

1910
@slow
1911
@require_torch_accelerator
1912
class PipelineSlowTests(unittest.TestCase):
1913
1914
1915
1916
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
1917
        backend_empty_cache(torch_device)
1918

1919
1920
1921
1922
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
1923
        backend_empty_cache(torch_device)
1924

1925
1926
1927
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
1928
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1946
1947
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
1948
        logger = logging.get_logger("diffusers.pipelines")
1949
1950
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
1951
                DiffusionPipeline.from_pretrained(
1952
1953
1954
1955
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
1956
                )
1957

1958
        assert (
1959
1960
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
1961
        )
1962

1963
    def test_from_save_pretrained(self):
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
1986
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1987
1988

        generator = torch.Generator(device=torch_device).manual_seed(0)
1989
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1990

1991
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1992

1993
    @is_torch_compile
1994
    @require_torch_2
1995
1996
1997
1998
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1999
    def test_from_save_pretrained_dynamo(self):
2000
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None)
2001
2002
2003
2004

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

2005
        scheduler = DDPMScheduler(num_train_timesteps=10)
2006

2007
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
2008
        ddpm = ddpm.to(torch_device)
2009
        ddpm.set_progress_bar_config(disable=None)
2010

2011
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
2012
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
2013
        ddpm_from_hub.set_progress_bar_config(disable=None)
2014

2015
        generator = torch.Generator(device=torch_device).manual_seed(0)
2016
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
2017

2018
        generator = torch.Generator(device=torch_device).manual_seed(0)
2019
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
2020

2021
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
2022
2023
2024
2025

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

2026
2027
        scheduler = DDPMScheduler(num_train_timesteps=10)

2028
        # pass unet into DiffusionPipeline
2029
2030
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
2031
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
2032
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
2033

2034
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
2035
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
2036
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
2037

2038
        generator = torch.Generator(device=torch_device).manual_seed(0)
2039
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="np").images
2040

2041
        generator = torch.Generator(device=torch_device).manual_seed(0)
2042
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
2043

2044
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
2045
2046
2047
2048

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

2049
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
2050
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
2051
        pipe.to(torch_device)
2052
        pipe.set_progress_bar_config(disable=None)
2053

2054
        images = pipe(output_type="np").images
2055
2056
2057
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

2058
        images = pipe(output_type="pil", num_inference_steps=4).images
2059
2060
2061
2062
2063
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
2064
        images = pipe(num_inference_steps=4).images
2065
2066
2067
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

2068
    @require_flax
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

2109
2110
2111
2112
2113
2114
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
2115
        pipe.enable_model_cpu_offload(device=torch_device)
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
2129
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="np"
2130
2131
2132
2133
2134
2135
2136
2137
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

2138
            assert np.abs(image - expected_image).max() < 3e-1
2139

2140
2141

@nightly
2142
@require_torch_accelerator
2143
class PipelineNightlyTests(unittest.TestCase):
2144
2145
2146
2147
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
2148
        backend_empty_cache(torch_device)
2149

2150
2151
2152
2153
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
2154
        backend_empty_cache(torch_device)
2155

2156
2157
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
2158
        model_id = "google/ddpm-cifar10-32"
2159

2160
        unet = UNet2DModel.from_pretrained(model_id)
2161
2162
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
2163

2164
2165
2166
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
2167

2168
2169
2170
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
2171

2172
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2173
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="np").images
2174

2175
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2176
        ddim_images = ddim(
2177
            batch_size=2,
2178
2179
2180
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
2181
            output_type="np",
2182
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
2183
        ).images
2184

2185
2186
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447


@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
@is_torch_compile
class TestLoraHotSwappingForPipeline(unittest.TestCase):
    """Test that hotswapping does not result in recompilation in a pipeline.

    We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
    tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
    recompilation.

    See
    https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
    for the analogous PEFT test.

    """

    def tearDown(self):
        # It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
        # there will be recompilation errors, as torch caches the model when run in the same process.
        super().tearDown()
        torch._dynamo.reset()
        gc.collect()
        backend_empty_cache(torch_device)

    def get_unet_lora_config(self, lora_rank, lora_alpha, target_modules):
        # from diffusers test_models_unet_2d_condition.py
        from peft import LoraConfig

        unet_lora_config = LoraConfig(
            r=lora_rank,
            lora_alpha=lora_alpha,
            target_modules=target_modules,
            init_lora_weights=False,
            use_dora=False,
        )
        return unet_lora_config

    def get_lora_state_dicts(self, modules_to_save, adapter_name):
        from peft import get_peft_model_state_dict

        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(
                    module, adapter_name=adapter_name
                )
        return state_dicts

    def get_dummy_input(self):
        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
            "return_dict": False,
        }
        return pipeline_inputs

    def check_pipeline_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
        """
        Check that hotswapping works on a pipeline.

        Steps:
        - create 2 LoRA adapters and save them
        - load the first adapter
        - hotswap the second adapter
        - check that the outputs are correct
        - optionally compile the model

        Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
        fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
        fine.
        """
        # create 2 adapters with different ranks and alphas
        dummy_input = self.get_dummy_input()
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        alpha0, alpha1 = rank0, rank1
        max_rank = max([rank0, rank1])
        if target_modules1 is None:
            target_modules1 = target_modules0[:]
        lora_config0 = self.get_unet_lora_config(rank0, alpha0, target_modules0)
        lora_config1 = self.get_unet_lora_config(rank1, alpha1, target_modules1)

        torch.manual_seed(0)
        pipeline.unet.add_adapter(lora_config0, adapter_name="adapter0")
        output0_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

        torch.manual_seed(1)
        pipeline.unet.add_adapter(lora_config1, adapter_name="adapter1")
        pipeline.unet.set_adapter("adapter1")
        output1_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

        # sanity check
        tol = 1e-3
        assert not np.allclose(output0_before, output1_before, atol=tol, rtol=tol)
        assert not (output0_before == 0).all()
        assert not (output1_before == 0).all()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
            lora0_state_dicts = self.get_lora_state_dicts({"unet": pipeline.unet}, adapter_name="adapter0")
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, **lora0_state_dicts
            )
            lora1_state_dicts = self.get_lora_state_dicts({"unet": pipeline.unet}, adapter_name="adapter1")
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, **lora1_state_dicts
            )
            del pipeline

            # load the first adapter
            pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
            if do_compile or (rank0 != rank1):
                # no need to prepare if the model is not compiled or if the ranks are identical
                pipeline.enable_lora_hotswap(target_rank=max_rank)

            file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")

            pipeline.load_lora_weights(file_name0)
            if do_compile:
                pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead")

            output0_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

            # sanity check: still same result
            assert np.allclose(output0_before, output0_after, atol=tol, rtol=tol)

            # hotswap the 2nd adapter
            pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")
            output1_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]

            # sanity check: since it's the same LoRA, the results should be identical
            assert np.allclose(output1_before, output1_after, atol=tol, rtol=tol)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_pipeline(self, rank0, rank1):
        self.check_pipeline_hotswap(
            do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
        )

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_pipline_linear(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_pipline_conv2d(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["conv", "conv1", "conv2"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    @parameterized.expand([(11, 11), (7, 13), (13, 7)])  # important to test small to large and vice versa
    def test_hotswapping_compiled_pipline_both_linear_and_conv2d(self, rank0, rank1):
        # It's important to add this context to raise an error on recompilation
        target_modules = ["to_q", "conv"]
        with torch._dynamo.config.patch(error_on_recompile=True):
            self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)

    def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
        with self.assertRaisesRegex(RuntimeError, msg):
            pipeline.enable_lora_hotswap(target_rank=32)

    def test_enable_lora_hotswap_called_after_adapter_added_warns(self):
        # ensure that enable_lora_hotswap is called before loading the first adapter
        from diffusers.loaders.peft import logger

        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        msg = (
            "It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
        )
        with self.assertLogs(logger=logger, level="WARNING") as cm:
            pipeline.enable_lora_hotswap(target_rank=32, check_compiled="warn")
            assert any(msg in log for log in cm.output)

    def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
        # check possibility to ignore the error/warning
        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")  # Capture all warnings
            pipeline.enable_lora_hotswap(target_rank=32, check_compiled="warn")
            self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")

    def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
        # check that wrong argument value raises an error
        lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        pipeline.unet.add_adapter(lora_config)
        msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
        with self.assertRaisesRegex(ValueError, msg):
            pipeline.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")

    def test_hotswap_second_adapter_targets_more_layers_raises(self):
        # check the error and log
        from diffusers.loaders.peft import logger

        # at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
        target_modules0 = ["to_q"]
        target_modules1 = ["to_q", "to_k"]
        with self.assertRaises(RuntimeError):  # peft raises RuntimeError
            with self.assertLogs(logger=logger, level="ERROR") as cm:
                self.check_pipeline_hotswap(
                    do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
                )
                assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)

    def test_hotswap_component_not_supported_raises(self):
        # right now, not some components don't support hotswapping, e.g. the text_encoder
        from peft import LoraConfig

        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
        lora_config0 = LoraConfig(target_modules=["q_proj"])
        lora_config1 = LoraConfig(target_modules=["q_proj"])

        pipeline.text_encoder.add_adapter(lora_config0, adapter_name="adapter0")
        pipeline.text_encoder.add_adapter(lora_config1, adapter_name="adapter1")

        with tempfile.TemporaryDirectory() as tmp_dirname:
            # save the adapter checkpoints
            lora0_state_dicts = self.get_lora_state_dicts(
                {"text_encoder": pipeline.text_encoder}, adapter_name="adapter0"
            )
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, **lora0_state_dicts
            )
            lora1_state_dicts = self.get_lora_state_dicts(
                {"text_encoder": pipeline.text_encoder}, adapter_name="adapter1"
            )
            StableDiffusionPipeline.save_lora_weights(
                save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, **lora1_state_dicts
            )
            del pipeline

            # load the first adapter
            pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
            file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
            file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")

            pipeline.load_lora_weights(file_name0)
            msg = re.escape(
                "At the moment, hotswapping is not supported for text encoders, please pass `hotswap=False`"
            )
            with self.assertRaisesRegex(ValueError, msg):
                pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")