test_pipelines.py 87.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
import sys
22
import tempfile
23
import traceback
24
import unittest
25
import unittest.mock as mock
26
27

import numpy as np
Anh71me's avatar
Anh71me committed
28
import PIL.Image
29
import requests_mock
30
import safetensors.torch
31
import torch
32
import torch.nn as nn
33
from huggingface_hub import snapshot_download
34
35
from parameterized import parameterized
from PIL import Image
36
from requests.exceptions import HTTPError
37
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
38

39
from diffusers import (
40
    AutoencoderKL,
41
    ConfigMixin,
42
43
44
45
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
46
    DiffusionPipeline,
47
48
49
50
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
51
    ModelMixin,
52
    PNDMScheduler,
53
    StableDiffusionImg2ImgPipeline,
54
    StableDiffusionInpaintPipelineLegacy,
55
    StableDiffusionPipeline,
56
    UNet2DConditionModel,
57
    UNet2DModel,
58
    UniPCMultistepScheduler,
59
    logging,
60
)
Sayak Paul's avatar
Sayak Paul committed
61
from diffusers.pipelines.pipeline_utils import _get_pipeline_class
62
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
63
64
65
66
from diffusers.utils import (
    CONFIG_NAME,
    WEIGHTS_NAME,
)
67
68
from diffusers.utils.testing_utils import (
    CaptureLogger,
69
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
70
    floats_tensor,
71
    get_python_version,
72
    get_tests_dir,
73
    is_torch_compile,
74
    load_numpy,
Dhruv Nair's avatar
Dhruv Nair committed
75
    nightly,
76
77
    require_compel,
    require_flax,
78
    require_onnxruntime,
Dhruv Nair's avatar
Dhruv Nair committed
79
    require_torch_2,
80
    require_torch_gpu,
81
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
82
83
    slow,
    torch_device,
84
)
Dhruv Nair's avatar
Dhruv Nair committed
85
from diffusers.utils.torch_utils import is_compiled_module
86
87


88
enable_full_determinism()
89
90


91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        model = torch.compile(model)
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
109
110
111
112
113

        # previous diffusers versions stripped compilation off
        # compiled modules
        assert is_compiled_module(ddpm.unet)

114
115
116
117
118
119
120
121
122
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
123
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
124
125

        generator = torch.Generator(device=torch_device).manual_seed(0)
126
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
127

128
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
129
130
131
132
133
134
135
136
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


137
138
139
class CustomEncoder(ModelMixin, ConfigMixin):
    def __init__(self):
        super().__init__()
140
        self.linear = nn.Linear(3, 3)
141
142
143
144
145
146
147
148


class CustomPipeline(DiffusionPipeline):
    def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler):
        super().__init__()
        self.register_modules(encoder=encoder, scheduler=scheduler)


149
class DownloadTests(unittest.TestCase):
150
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
151
152
153
154
155
156
157
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
158
                DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
159
160

            download_requests = [r.method for r in m.request_history]
161
            assert download_requests.count("HEAD") == 15, "15 calls to files"
162
163
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
            assert (
164
                len(download_requests) == 32
165
166
167
168
169
170
171
172
            ), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
173
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
174
175
176
177
178
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def test_less_downloads_passed_object(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            cached_folder = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            # make sure safety checker is not downloaded
            assert "safety_checker" not in os.listdir(cached_folder)

            # make sure rest is downloaded
            assert "unet" in os.listdir(cached_folder)
            assert "tokenizer" in os.listdir(cached_folder)
            assert "vae" in os.listdir(cached_folder)
            assert "model_index.json" in os.listdir(cached_folder)
            assert "scheduler" in os.listdir(cached_folder)
            assert "feature_extractor" in os.listdir(cached_folder)

196
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def test_less_downloads_passed_object_calls(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            # 15 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("HEAD") == 13, "13 calls to files"
            # 17 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
            assert (
                len(download_requests) == 28
            ), "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

229
230
231
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
232
            tmpdirname = DiffusionPipeline.download(
233
234
235
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

236
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
237
238
239
240
241
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
242
243
244
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

245
246
247
248
249
250
251
252
253
254
255
    def test_force_safetensors_error(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            with self.assertRaises(EnvironmentError):
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
                    safety_checker=None,
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                )

256
257
258
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
259
            tmpdirname = DiffusionPipeline.download(
260
261
262
263
264
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

265
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
266
267
268
269
270
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def test_download_safetensors_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "safetensors" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".safetensors" in f]) == 8
                assert not any(".bin" in f for f in files)

    def test_download_bin_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=False,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "bin" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".bin" in f]) == 8
                assert not any(".safetensors" in f for f in files)

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_download_no_openvino_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-open-vino",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # make sure that by default no openvino weights are downloaded
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any("openvino_" in f for f in files)

    def test_download_no_onnx_by_default(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
337
                "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
338
                cache_dir=tmpdirname,
339
                use_safetensors=False,
340
341
342
343
344
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

345
            # make sure that by default no onnx weights are downloaded for non-ONNX pipelines
346
347
348
            assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert not any((f.endswith(".onnx") or f.endswith(".pb")) for f in files)

349
350
    @require_onnxruntime
    def test_download_onnx_by_default_for_onnx_pipelines(self):
351
352
353
354
355
356
357
358
359
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = DiffusionPipeline.download(
                "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline",
                cache_dir=tmpdirname,
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

360
            # make sure that by default onnx weights are downloaded for ONNX pipelines
361
362
363
364
            assert any((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
            assert any((f.endswith(".onnx")) for f in files)
            assert any((f.endswith(".pb")) for f in files)

365
366
367
368
369
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
370
        pipe = pipe.to(torch_device)
371
        generator = torch.manual_seed(0)
372
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
373
374

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
375
        pipe_2 = pipe_2.to(torch_device)
376
        generator = torch.manual_seed(0)
377
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
378
379
380
381
382
383
384
385

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
386
        pipe = pipe.to(torch_device)
387
        generator = torch.manual_seed(0)
388
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
389
390
391
392

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
393
            pipe_2 = pipe_2.to(torch_device)
394

395
            generator = torch.manual_seed(0)
396

397
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
398
399
400
401
402
403

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
404
        pipe = pipe.to(torch_device)
405
406

        generator = torch.manual_seed(0)
407
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
408
409
410
411

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
412
            pipe_2 = pipe_2.to(torch_device)
413

414
            generator = torch.manual_seed(0)
415

416
            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
417
418
419

        assert np.max(np.abs(out - out_2)) < 1e-3

420
421
422
423
424
425
426
427
428
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
429
        orig_pipe = DiffusionPipeline.from_pretrained(
430
431
432
433
434
435
436
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
437
            pipe = DiffusionPipeline.from_pretrained(
438
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
439
440
441
442
443
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_local_files_only_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # first check that with local files only the pipeline can only be used if cached
        with self.assertRaises(FileNotFoundError):
            with tempfile.TemporaryDirectory() as tmpdirname:
                orig_pipe = DiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True, cache_dir=tmpdirname
                )

        # now download
        orig_pipe = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-torch")

        # make sure it can be loaded with local_files_only
        orig_pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to connect to the internet.
        # Make sure it works local_files_only only works here!
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
480
481
482
483
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
484
485
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
486
            with tempfile.TemporaryDirectory() as tmpdirname:
487
                tmpdirname = StableDiffusionPipeline.download(
488
489
490
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
491
                )
492
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
493
494
495
496
497
498
499
500
501
502
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

    def test_download_variant_all(self):
503
504
505
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
506
507
508
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
509
                tmpdirname = StableDiffusionPipeline.download(
510
511
512
513
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
514
                )
515
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
516
517
518
519
520
521
522
523
524
525
526
527
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

    def test_download_variant_partly(self):
528
529
530
        for use_safetensors in [False, True]:
            other_format = ".bin" if use_safetensors else ".safetensors"
            this_format = ".safetensors" if use_safetensors else ".bin"
531
532
533
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
534
                tmpdirname = StableDiffusionPipeline.download(
535
536
537
538
                    "hf-internal-testing/stable-diffusion-all-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
539
                )
540
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
541
542
                files = [item for sublist in all_root_files for item in sublist]

543
                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
544
545
546
547
548
549
550
551
552
553
554

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    def test_download_variants_with_sharded_checkpoints(self):
        # Here we test for downloading of "variant" files belonging to the `unet` and
        # the `text_encoder`. Their checkpoints can be sharded.
        for use_safetensors in [True, False]:
            for variant in ["fp16", None]:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    tmpdirname = DiffusionPipeline.download(
                        "hf-internal-testing/tiny-stable-diffusion-pipe-variants-right-format",
                        safety_checker=None,
                        cache_dir=tmpdirname,
                        variant=variant,
                        use_safetensors=use_safetensors,
                    )

                    all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                    files = [item for sublist in all_root_files for item in sublist]

                    # Check for `model_ext` and `variant`.
                    model_ext = ".safetensors" if use_safetensors else ".bin"
                    unexpected_ext = ".bin" if use_safetensors else ".safetensors"
                    model_files = [f for f in files if f.endswith(model_ext)]
                    assert not any(f.endswith(unexpected_ext) for f in files)
                    assert all(variant in f for f in model_files if f.endswith(model_ext) and variant is not None)

    def test_download_legacy_variants_with_sharded_ckpts_raises_warning(self):
        repo_id = "hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds"
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        deprecated_warning_msg = "Warning: The repository contains sharded checkpoints for variant"

        for is_local in [True, False]:
            with CaptureLogger(logger) as cap_logger:
                with tempfile.TemporaryDirectory() as tmpdirname:
                    local_repo_id = repo_id
                    if is_local:
                        local_repo_id = snapshot_download(repo_id, cache_dir=tmpdirname)

                    _ = DiffusionPipeline.from_pretrained(
                        local_repo_id,
                        safety_checker=None,
                        variant="fp16",
                        use_safetensors=True,
                    )
            assert deprecated_warning_msg in str(cap_logger), "Deprecation warning not found in logs"

599
600
601
602
603
604
605
606
    def test_download_safetensors_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = True

        # text encoder is missing no variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
607
                    "hf-internal-testing/stable-diffusion-broken-variants",
608
609
                    cache_dir=tmpdirname,
                    variant=variant,
610
                    use_safetensors=use_safetensors,
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
                )
            assert "Error no file name" in str(error_context.exception)

        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"

    def test_download_bin_only_variant_exists_for_model(self):
        variant = None
        use_safetensors = False

        # text encoder is missing Non-variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
637
                    cache_dir=tmpdirname,
638
639
                    variant=variant,
                    use_safetensors=use_safetensors,
640
                )
641
            assert "Error no file name" in str(error_context.exception)
642

643
644
645
646
647
648
649
650
651
652
653
654
655
        # text encoder has fp16 variants so we can load it
        with tempfile.TemporaryDirectory() as tmpdirname:
            tmpdirname = StableDiffusionPipeline.download(
                "hf-internal-testing/stable-diffusion-broken-variants",
                use_safetensors=use_safetensors,
                cache_dir=tmpdirname,
                variant="fp16",
            )
            all_root_files = [t[-1] for t in os.walk(tmpdirname)]
            files = [item for sublist in all_root_files for item in sublist]
            # None of the downloaded files should be a non-variant file even if we have some here:
            # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
            assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
656

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    def test_download_safetensors_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = True

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )

            assert "Error no file name" in str(error_context.exception)

    def test_download_bin_variant_does_not_exist_for_model(self):
        variant = "no_ema"
        use_safetensors = False

        # text encoder is missing no_ema variant weights, so the following can't work
        with tempfile.TemporaryDirectory() as tmpdirname:
            with self.assertRaises(OSError) as error_context:
                tmpdirname = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/stable-diffusion-broken-variants",
                    cache_dir=tmpdirname,
                    variant=variant,
                    use_safetensors=use_safetensors,
                )
            assert "Error no file name" in str(error_context.exception)
687

688
689
690
691
692
693
694
695
696
697
698
699
    def test_local_save_load_index(self):
        prompt = "hello"
        for variant in [None, "fp16"]:
            for use_safe in [True, False]:
                pipe = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    variant=variant,
                    use_safetensors=use_safe,
                    safety_checker=None,
                )
                pipe = pipe.to(torch_device)
                generator = torch.manual_seed(0)
700
                out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
701
702

                with tempfile.TemporaryDirectory() as tmpdirname:
703
                    pipe.save_pretrained(tmpdirname, variant=variant, safe_serialization=use_safe)
704
705
706
707
708
709
710
                    pipe_2 = StableDiffusionPipeline.from_pretrained(
                        tmpdirname, safe_serialization=use_safe, variant=variant
                    )
                    pipe_2 = pipe_2.to(torch_device)

                generator = torch.manual_seed(0)

711
                out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
712
713
714

                assert np.max(np.abs(out - out_2)) < 1e-3

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    def test_text_inversion_download(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe = pipe.to(torch_device)

        num_tokens = len(pipe.tokenizer)

        # single token load local
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<*>": torch.ones((32,))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<*>")
            assert token == num_tokens, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
            assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"

            prompt = "hey <*>"
736
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
            assert out.shape == (1, 128, 128, 3)

        # single token load local with weight name
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<**>": 2 * torch.ones((1, 32))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<**>")
            assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
            assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"

            prompt = "hey <**>"
752
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
            assert out.shape == (1, 128, 128, 3)

        # multi token load
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<***>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")

            assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
772
            assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
773
774

            prompt = "hey <***>"
775
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
            assert out.shape == (1, 128, 128, 3)

        # multi token load a1111
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {
                "string_to_param": {
                    "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
                },
                "name": "<****>",
            }
            torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<****>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")

            assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
800
            assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
801
802

            prompt = "hey <****>"
803
            out = pipe(prompt, num_inference_steps=1, output_type="np").images
804
805
            assert out.shape == (1, 128, 128, 3)

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
        # multi embedding load
        with tempfile.TemporaryDirectory() as tmpdirname1:
            with tempfile.TemporaryDirectory() as tmpdirname2:
                ten = {"<*****>": torch.ones((32,))}
                torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))

                ten = {"<******>": 2 * torch.ones((1, 32))}
                torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))

                pipe.load_textual_inversion([tmpdirname1, tmpdirname2])

                token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
                assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
                assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"

                token = pipe.tokenizer.convert_tokens_to_ids("<******>")
                assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
                assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"

                prompt = "hey <*****> <******>"
828
                out = pipe(prompt, num_inference_steps=1, output_type="np").images
829
830
                assert out.shape == (1, 128, 128, 3)

831
832
833
834
835
836
837
838
839
840
        # single token state dict load
        ten = {"<x>": torch.ones((32,))}
        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<x>")
        assert token == num_tokens + 10, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
        assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>"

        prompt = "hey <x>"
841
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
        assert out.shape == (1, 128, 128, 3)

        # multi embedding state dict load
        ten1 = {"<xxxxx>": torch.ones((32,))}
        ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))}

        pipe.load_textual_inversion([ten1, ten2])

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>")
        assert token == num_tokens + 11, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
        assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>"

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>")
        assert token == num_tokens + 12, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
        assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>"

        prompt = "hey <xxxxx> <xxxxxx>"
861
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
        assert out.shape == (1, 128, 128, 3)

        # auto1111 multi-token state dict load
        ten = {
            "string_to_param": {
                "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
            },
            "name": "<xxxx>",
        }

        pipe.load_textual_inversion(ten)

        token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>")
        token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1")
        token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2")

        assert token == num_tokens + 13, "Added token must be at spot `num_tokens`"
        assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`"
        assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`"
        assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
        assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
        assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
        assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2"

        prompt = "hey <xxxx>"
887
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
888
889
        assert out.shape == (1, 128, 128, 3)

890
891
892
893
894
895
896
897
898
        # multiple references to multi embedding
        ten = {"<cat>": torch.ones(3, 32)}
        pipe.load_textual_inversion(ten)

        assert (
            pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2"
        )

        prompt = "hey <cat> <cat>"
899
        out = pipe(prompt, num_inference_steps=1, output_type="np").images
900
901
        assert out.shape == (1, 128, 128, 3)

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
    def test_text_inversion_multi_tokens(self):
        pipe1 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe1 = pipe1.to(torch_device)

        token1, token2 = "<*>", "<**>"
        ten1 = torch.ones((32,))
        ten2 = torch.ones((32,)) * 2

        num_tokens = len(pipe1.tokenizer)

        pipe1.load_textual_inversion(ten1, token=token1)
        pipe1.load_textual_inversion(ten2, token=token2)
        emb1 = pipe1.text_encoder.get_input_embeddings().weight

        pipe2 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe2 = pipe2.to(torch_device)
        pipe2.load_textual_inversion([ten1, ten2], token=[token1, token2])
        emb2 = pipe2.text_encoder.get_input_embeddings().weight

        pipe3 = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe3 = pipe3.to(torch_device)
        pipe3.load_textual_inversion(torch.stack([ten1, ten2], dim=0), token=[token1, token2])
        emb3 = pipe3.text_encoder.get_input_embeddings().weight

        assert len(pipe1.tokenizer) == len(pipe2.tokenizer) == len(pipe3.tokenizer) == num_tokens + 2
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token1)
            == pipe2.tokenizer.convert_tokens_to_ids(token1)
            == pipe3.tokenizer.convert_tokens_to_ids(token1)
            == num_tokens
        )
        assert (
            pipe1.tokenizer.convert_tokens_to_ids(token2)
            == pipe2.tokenizer.convert_tokens_to_ids(token2)
            == pipe3.tokenizer.convert_tokens_to_ids(token2)
            == num_tokens + 1
        )
        assert emb1[num_tokens].sum().item() == emb2[num_tokens].sum().item() == emb3[num_tokens].sum().item()
        assert (
            emb1[num_tokens + 1].sum().item() == emb2[num_tokens + 1].sum().item() == emb3[num_tokens + 1].sum().item()
        )

Patrick von Platen's avatar
Patrick von Platen committed
950
951
952
953
954
955
956
957
958
959
960
961
962
    def test_download_ignore_files(self):
        # Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
            assert len(files) == 14

963
964
965
966
967
968
969
970
    def test_get_pipeline_class_from_flax(self):
        flax_config = {"_class_name": "FlaxStableDiffusionPipeline"}
        config = {"_class_name": "StableDiffusionPipeline"}

        # when loading a PyTorch Pipeline from a FlaxPipeline `model_index.json`, e.g.: https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-lms-pipe/blob/7a9063578b325779f0f1967874a6771caa973cad/model_index.json#L2
        # we need to make sure that we don't load the Flax Pipeline class, but instead the PyTorch pipeline class
        assert _get_pipeline_class(DiffusionPipeline, flax_config) == _get_pipeline_class(DiffusionPipeline, config)

971

Patrick von Platen's avatar
Patrick von Platen committed
972
973
974
975
976
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
977
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
978
979
980
981
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
1007
1008
1009
1010
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
1011
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1012
1013
1014
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
1015

Patrick von Platen's avatar
Patrick von Platen committed
1016
1017
1018
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

1019
1020
1021
1022
1023
    def test_remote_components(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-components")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1024
        # Check that only loading custom components "my_unet", "my_scheduler" works
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "StableDiffusionXLPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1038
        # Check that only loading custom components "my_unet", "my_scheduler" and explicit custom pipeline works
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-components", custom_pipeline="my_pipeline", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

    def test_remote_auto_custom_pipe(self):
        # make sure that trust remote code has to be passed
        with self.assertRaises(ValueError):
            pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-all")

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1057
        # Check that only loading custom components "my_unet", "my_scheduler" and auto custom pipeline works
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        pipeline = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-sdxl-custom-all", trust_remote_code=True
        )

        assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
        assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
        assert pipeline.__class__.__name__ == "MyPipeline"

        pipeline = pipeline.to(torch_device)
        images = pipeline("test", num_inference_steps=2, output_type="np")[0]

        assert images.shape == (1, 64, 64, 3)

1071
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
1072
1073
1074
1075
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
1076
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1077
1078
1079
1080
1081
1082
1083
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

1098
1099
1100
1101
1102
1103
1104
    def test_custom_model_and_pipeline(self):
        pipe = CustomPipeline(
            encoder=CustomEncoder(),
            scheduler=DDIMScheduler(),
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
1105
            pipe.save_pretrained(tmpdirname, safe_serialization=False)
1106
1107
1108
1109

            pipe_new = CustomPipeline.from_pretrained(tmpdirname)
            pipe_new.save_pretrained(tmpdirname)

1110
1111
1112
1113
1114
1115
        conf_1 = dict(pipe.config)
        conf_2 = dict(pipe_new.config)

        del conf_2["_name_or_path"]

        assert conf_1 == conf_2
1116

Patrick von Platen's avatar
Patrick von Platen committed
1117
    @slow
1118
    @require_torch_gpu
1119
    def test_download_from_git(self):
1120
1121
        # Because adaptive_avg_pool2d_backward_cuda
        # does not have a deterministic implementation.
Patrick von Platen's avatar
Patrick von Platen committed
1122
1123
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

1124
        feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
1125
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
1126
1127
1128
1129
1130
1131

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
1132
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
1133
        )
1134
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    def test_save_pipeline_change_config(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"

        # let's make sure that changing the scheduler is correctly reflected
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"

Patrick von Platen's avatar
Patrick von Platen committed
1163

1164
class PipelineFastTests(unittest.TestCase):
1165
1166
1167
1168
1169
1170
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1171
1172
1173
1174
1175
1176
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1177
1178
1179
1180
1181
1182
1183
1184
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

1185
    def dummy_uncond_unet(self, sample_size=32):
1186
1187
1188
1189
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1190
            sample_size=sample_size,
1191
1192
1193
1194
1195
1196
1197
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

1198
    def dummy_cond_unet(self, sample_size=32):
1199
1200
1201
1202
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
1203
            sample_size=sample_size,
1204
1205
1206
1207
1208
1209
1210
1211
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

1212
    @property
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

1225
    @property
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

1241
    @property
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

1256
1257
1258
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
1259
            [DDPMScheduler, DDPMPipeline, 32],
1260
            [DDIMScheduler, DDIMPipeline, (32, 64)],
1261
            [DDPMScheduler, DDPMPipeline, (64, 32)],
1262
1263
1264
1265
1266
1267
1268
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

1269
        generator = torch.manual_seed(0)
1270
1271
1272
1273
1274
1275
1276
1277
1278
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
1279
        """Test that components property works correctly"""
1280
        unet = self.dummy_cond_unet()
1281
        scheduler = PNDMScheduler(skip_prk_steps=True)
1282
1283
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
1284
1285
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

1286
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
1287
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
1288
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
1289
1290

        # make sure here that pndm scheduler skips prk
1291
        inpaint = StableDiffusionInpaintPipelineLegacy(
1292
1293
1294
1295
1296
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
1297
            safety_checker=None,
1298
            feature_extractor=self.dummy_extractor,
1299
        ).to(torch_device)
1300
1301
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components, image_encoder=None).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components, image_encoder=None).to(torch_device)
1302
1303

        prompt = "A painting of a squirrel eating a burger"
1304

1305
        generator = torch.manual_seed(0)
1306
        image_inpaint = inpaint(
1307
1308
1309
1310
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1311
            image=init_image,
1312
1313
1314
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
1315
1316
1317
1318
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1319
            image=init_image,
1320
1321
1322
        ).images
        image_text2img = text2img(
            [prompt],
1323
1324
1325
            generator=generator,
            num_inference_steps=2,
            output_type="np",
1326
        ).images
1327

1328
1329
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
1330
        assert image_text2img.shape == (1, 64, 64, 3)
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
    @require_torch_gpu
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload()

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
            sd.to("cuda")

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

1368
    def test_set_scheduler(self):
1369
        unet = self.dummy_cond_unet()
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
    def test_set_component_to_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        pipeline = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        generator = torch.Generator(device="cpu").manual_seed(0)

        prompt = "This is a flower"

        out_image = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        pipeline.feature_extractor = None
        generator = torch.Generator(device="cpu").manual_seed(0)
        out_image_2 = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        assert out_image.shape == (1, 64, 64, 3)
        assert np.abs(out_image - out_image_2).max() < 1e-3

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
    def test_optional_components_is_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        items = {
            "feature_extractor": self.dummy_extractor,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": bert,
            "tokenizer": tokenizer,
            "safety_checker": None,
            # we don't add an image encoder
        }

        pipeline = StableDiffusionPipeline(**items)

        assert sorted(pipeline.components.keys()) == sorted(["image_encoder"] + list(items.keys()))
        assert pipeline.image_encoder is None

1463
    def test_set_scheduler_consistency(self):
1464
        unet = self.dummy_cond_unet()
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
1524
1525
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
1526
1527
1528
1529
1530
1531
1532
1533

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
1554
        use_safetensors = False
1555
1556
1557

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
1558
1559
1560
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                cache_dir=tmpdirname,
                use_safetensors=use_safetensors,
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    def test_name_or_path(self):
        model_path = "hf-internal-testing/tiny-stable-diffusion-torch"
        sd = DiffusionPipeline.from_pretrained(model_path)

        assert sd.name_or_path == model_path

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = DiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.name_or_path == tmpdirname

Sayak Paul's avatar
Sayak Paul committed
1691
    def test_error_no_variant_available(self):
1692
        variant = "fp16"
Sayak Paul's avatar
Sayak Paul committed
1693
        with self.assertRaises(ValueError) as error_context:
1694
            _ = StableDiffusionPipeline.from_pretrained(
1695
1696
1697
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
            )

Sayak Paul's avatar
Sayak Paul committed
1698
1699
        assert "but no such modeling files are available" in str(error_context.exception)
        assert variant in str(error_context.exception)
1700

1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
    def test_pipe_to(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        device_type = torch.device(torch_device).type

        sd1 = sd.to(device_type)
        sd2 = sd.to(torch.device(device_type))
        sd3 = sd.to(device_type, torch.float32)
        sd4 = sd.to(device=device_type)
        sd5 = sd.to(torch_device=device_type)
        sd6 = sd.to(device_type, dtype=torch.float32)
        sd7 = sd.to(device_type, torch_dtype=torch.float32)

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type
        assert sd4.device.type == device_type
        assert sd5.device.type == device_type
        assert sd6.device.type == device_type
        assert sd7.device.type == device_type

        sd1 = sd.to(torch.float16)
        sd2 = sd.to(None, torch.float16)
        sd3 = sd.to(dtype=torch.float16)
1739
        sd4 = sd.to(dtype=torch.float16)
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
        sd5 = sd.to(None, dtype=torch.float16)
        sd6 = sd.to(None, torch_dtype=torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16
        assert sd4.dtype == torch.float16
        assert sd5.dtype == torch.float16
        assert sd6.dtype == torch.float16

        sd1 = sd.to(device=device_type, dtype=torch.float16)
        sd2 = sd.to(torch_device=device_type, torch_dtype=torch.float16)
        sd3 = sd.to(device_type, torch.float16)

        assert sd1.dtype == torch.float16
        assert sd2.dtype == torch.float16
        assert sd3.dtype == torch.float16

        assert sd1.device.type == device_type
        assert sd2.device.type == device_type
        assert sd3.device.type == device_type

    def test_pipe_same_device_id_offload(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload(gpu_id=5)
        assert sd._offload_gpu_id == 5
        sd.maybe_free_model_hooks()
        assert sd._offload_gpu_id == 5

1784

1785
@slow
1786
@require_torch_gpu
1787
class PipelineSlowTests(unittest.TestCase):
1788
1789
1790
1791
1792
1793
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1794
1795
1796
1797
1798
1799
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1800
1801
1802
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
1803
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1821
1822
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
1823
        logger = logging.get_logger("diffusers.pipelines")
1824
1825
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
1826
                DiffusionPipeline.from_pretrained(
1827
1828
1829
1830
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
1831
                )
1832

1833
        assert (
1834
1835
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
1836
        )
1837

1838
    def test_from_save_pretrained(self):
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
1861
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1862
1863

        generator = torch.Generator(device=torch_device).manual_seed(0)
1864
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1865

1866
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1867

1868
    @is_torch_compile
1869
    @require_torch_2
1870
1871
1872
1873
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1874
    def test_from_save_pretrained_dynamo(self):
1875
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None)
1876
1877
1878
1879

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

1880
        scheduler = DDPMScheduler(num_train_timesteps=10)
1881

1882
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
1883
        ddpm = ddpm.to(torch_device)
1884
        ddpm.set_progress_bar_config(disable=None)
1885

1886
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1887
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1888
        ddpm_from_hub.set_progress_bar_config(disable=None)
1889

1890
        generator = torch.Generator(device=torch_device).manual_seed(0)
1891
        image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
1892

1893
        generator = torch.Generator(device=torch_device).manual_seed(0)
1894
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
1895

1896
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1897
1898
1899
1900

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1901
1902
        scheduler = DDPMScheduler(num_train_timesteps=10)

1903
        # pass unet into DiffusionPipeline
1904
1905
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
1906
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
1907
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1908

1909
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1910
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1911
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1912

1913
        generator = torch.Generator(device=torch_device).manual_seed(0)
1914
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="np").images
1915

1916
        generator = torch.Generator(device=torch_device).manual_seed(0)
1917
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
1918

1919
        assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
1920
1921
1922
1923

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

1924
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
1925
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
1926
        pipe.to(torch_device)
1927
        pipe.set_progress_bar_config(disable=None)
1928

1929
        images = pipe(output_type="np").images
1930
1931
1932
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1933
        images = pipe(output_type="pil", num_inference_steps=4).images
1934
1935
1936
1937
1938
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1939
        images = pipe(num_inference_steps=4).images
1940
1941
1942
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

1943
    @require_flax
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
2004
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="np"
2005
2006
2007
2008
2009
2010
2011
2012
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

2013
            assert np.abs(image - expected_image).max() < 3e-1
2014

2015
2016
2017
2018

@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
2019
2020
2021
2022
2023
2024
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

2025
2026
2027
2028
2029
2030
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

2031
2032
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
2033
        model_id = "google/ddpm-cifar10-32"
2034

2035
        unet = UNet2DModel.from_pretrained(model_id)
2036
2037
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
2038

2039
2040
2041
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
2042

2043
2044
2045
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
2046

2047
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2048
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="np").images
2049

2050
        generator = torch.Generator(device=torch_device).manual_seed(seed)
2051
        ddim_images = ddim(
2052
            batch_size=2,
2053
2054
2055
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
2056
            output_type="np",
2057
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
2058
        ).images
2059

2060
2061
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1