scheduling_pndm.py 5.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
        self.timesteps = int(timesteps)

        if beta_schedule == "linear":
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            self.betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
finish  
Patrick von Platen committed
58
        # for now we only support F-PNDM, i.e. the runge-kutta method
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
62
        self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
        self.ets = []
        self.warmup_time_steps = {}
        self.time_steps = {}

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
74
75
76
77
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return self.one
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
    def get_warmup_time_steps(self, num_inference_steps):
        if num_inference_steps in self.warmup_time_steps:
            return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
81

Patrick von Platen's avatar
Patrick von Platen committed
82
        inference_step_times = list(range(0, self.timesteps, self.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
83

Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
        warmup_time_steps = np.array(inference_step_times[-self.pndm_order:]).repeat(2) + np.tile(np.array([0, self.timesteps // num_inference_steps // 2]), self.pndm_order)
        self.warmup_time_steps[num_inference_steps] = list(reversed(warmup_time_steps[:-1].repeat(2)[1:-1]))

        return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
88

Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
92

Patrick von Platen's avatar
Patrick von Platen committed
93
94
        inference_step_times = list(range(0, self.timesteps, self.timesteps // num_inference_steps))
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
95

Patrick von Platen's avatar
Patrick von Platen committed
96
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
97

Patrick von Platen's avatar
Patrick von Platen committed
98
99
    def step_warm_up(self, residual, image, t, num_inference_steps):
        warmup_time_steps = self.get_warmup_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
100

Patrick von Platen's avatar
Patrick von Platen committed
101
102
        t_prev = warmup_time_steps[t // 4 * 4]
        t_next = warmup_time_steps[min(t + 1, len(warmup_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
103

Patrick von Platen's avatar
Patrick von Platen committed
104
105
106
107
108
109
110
111
112
113
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
114

Patrick von Platen's avatar
Patrick von Platen committed
115
        return self.transfer(image, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
116

Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
123
124
125
126
    def step(self, residual, image, t, num_inference_steps):
        timesteps = self.get_time_steps(num_inference_steps)

        t_prev = timesteps[t]
        t_next = timesteps[min(t + 1, len(timesteps) - 1)]
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

        return self.transfer(image, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
127

Patrick von Platen's avatar
Patrick von Platen committed
128
    def transfer(self, x, t, t_next, et):
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133
        # TODO(Patrick): clean up to be compatible with numpy and give better names

        alphas_cump = self.alphas_cumprod.to(x.device)
        at = alphas_cump[t + 1].view(-1, 1, 1, 1)
        at_next = alphas_cump[t_next + 1].view(-1, 1, 1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
139
140
141

        x_delta = (at_next - at) * ((1 / (at.sqrt() * (at.sqrt() + at_next.sqrt()))) * x - 1 / (at.sqrt() * (((1 - at_next) * at).sqrt() + ((1 - at) * at_next).sqrt())) * et)

        x_next = x + x_delta
        return x_next

    def __len__(self):
        return self.timesteps