scheduling_pndm.py 5.52 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
32
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
        self.timesteps = int(timesteps)

        if beta_schedule == "linear":
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            self.betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
        # mainly at equations (12) and (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
64
        self.cur_residual = 0
65
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
        self.ets = []
        self.warmup_time_steps = {}
        self.time_steps = {}

Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
79
80
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return self.one
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
    def get_warmup_time_steps(self, num_inference_steps):
        if num_inference_steps in self.warmup_time_steps:
            return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
84

Patrick von Platen's avatar
Patrick von Platen committed
85
        inference_step_times = list(range(0, self.timesteps, self.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
86

87
88
89
        warmup_time_steps = np.array(inference_step_times[-self.pndm_order :]).repeat(2) + np.tile(
            np.array([0, self.timesteps // num_inference_steps // 2]), self.pndm_order
        )
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
        self.warmup_time_steps[num_inference_steps] = list(reversed(warmup_time_steps[:-1].repeat(2)[1:-1]))

        return self.warmup_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
93

Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
97

Patrick von Platen's avatar
Patrick von Platen committed
98
99
        inference_step_times = list(range(0, self.timesteps, self.timesteps // num_inference_steps))
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
100

Patrick von Platen's avatar
Patrick von Platen committed
101
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
102

103
    def step_prk(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
104
        # TODO(Patrick) - need to rethink whether the "warmup" way is the correct API design here
Patrick von Platen's avatar
Patrick von Platen committed
105
        warmup_time_steps = self.get_warmup_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
106

Patrick von Platen's avatar
Patrick von Platen committed
107
108
        t_prev = warmup_time_steps[t // 4 * 4]
        t_next = warmup_time_steps[min(t + 1, len(warmup_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
109

Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
113
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
120
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
121

122
        return self.transfer(self.cur_sample, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
123

124
    def step_plms(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
128
129
130
131
132
        timesteps = self.get_time_steps(num_inference_steps)

        t_prev = timesteps[t]
        t_next = timesteps[min(t + 1, len(timesteps) - 1)]
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

133
        return self.transfer(sample, t_prev, t_next, residual)
Patrick von Platen's avatar
Patrick von Platen committed
134

Patrick von Platen's avatar
Patrick von Platen committed
135
    def transfer(self, x, t, t_next, et):
Patrick von Platen's avatar
Patrick von Platen committed
136
137
138
139
140
        # TODO(Patrick): clean up to be compatible with numpy and give better names

        alphas_cump = self.alphas_cumprod.to(x.device)
        at = alphas_cump[t + 1].view(-1, 1, 1, 1)
        at_next = alphas_cump[t_next + 1].view(-1, 1, 1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
141

142
143
144
145
        x_delta = (at_next - at) * (
            (1 / (at.sqrt() * (at.sqrt() + at_next.sqrt()))) * x
            - 1 / (at.sqrt() * (((1 - at_next) * at).sqrt() + ((1 - at) * at_next).sqrt())) * et
        )
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149
150
151

        x_next = x + x_delta
        return x_next

    def __len__(self):
        return self.timesteps