resnet.py 34.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

patil-suraj's avatar
patil-suraj committed
16
from functools import partial
17
from typing import Optional
Patrick von Platen's avatar
Patrick von Platen committed
18

19
20
21
22
import torch
import torch.nn as nn
import torch.nn.functional as F

23
24
from .attention import AdaGroupNorm

25

26
class Upsample1D(nn.Module):
27
    """A 1D upsampling layer with an optional convolution.
28
29

    Parameters:
30
31
32
33
34
35
36
37
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        use_conv_transpose (`bool`, default `False`):
            option to use a convolution transpose.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    """

    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name

        self.conv = None
        if use_conv_transpose:
            self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)

        x = F.interpolate(x, scale_factor=2.0, mode="nearest")

        if self.use_conv:
            x = self.conv(x)

        return x


class Downsample1D(nn.Module):
68
    """A 1D downsampling layer with an optional convolution.
69
70

    Parameters:
71
72
73
74
75
76
77
78
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        padding (`int`, default `1`):
            padding for the convolution.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    """

    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
        stride = 2
        self.name = name

        if use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.conv(x)


101
class Upsample2D(nn.Module):
102
    """A 2D upsampling layer with an optional convolution.
103

104
    Parameters:
105
106
107
108
109
110
111
112
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        use_conv_transpose (`bool`, default `False`):
            option to use a convolution transpose.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
113
114
    """

115
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
116
117
118
119
120
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
121
        self.name = name
122

patil-suraj's avatar
patil-suraj committed
123
        conv = None
124
        if use_conv_transpose:
125
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
126
        elif use_conv:
127
            conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
128

129
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
130
131
132
133
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
134

135
    def forward(self, hidden_states, output_size=None):
136
        assert hidden_states.shape[1] == self.channels
137

138
        if self.use_conv_transpose:
139
            return self.conv(hidden_states)
patil-suraj's avatar
patil-suraj committed
140

141
142
143
144
145
146
147
        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

148
149
150
151
        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

152
153
154
155
156
157
        # if `output_size` is passed we force the interpolation output
        # size and do not make use of `scale_factor=2`
        if output_size is None:
            hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
        else:
            hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
patil-suraj's avatar
patil-suraj committed
158

159
160
161
162
        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

163
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
164
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
165
            if self.name == "conv":
166
                hidden_states = self.conv(hidden_states)
patil-suraj's avatar
patil-suraj committed
167
            else:
168
                hidden_states = self.Conv2d_0(hidden_states)
patil-suraj's avatar
patil-suraj committed
169

170
        return hidden_states
171
172


173
class Downsample2D(nn.Module):
174
    """A 2D downsampling layer with an optional convolution.
175

176
    Parameters:
177
178
179
180
181
182
183
184
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        padding (`int`, default `1`):
            padding for the convolution.
185
186
    """

187
    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
188
189
190
191
192
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
193
        stride = 2
patil-suraj's avatar
patil-suraj committed
194
195
        self.name = name

196
        if use_conv:
197
            conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
198
199
        else:
            assert self.channels == self.out_channels
200
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
patil-suraj's avatar
patil-suraj committed
201

202
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
203
        if name == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
204
            self.Conv2d_0 = conv
patil-suraj's avatar
patil-suraj committed
205
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
206
        elif name == "Conv2d_0":
Patrick von Platen's avatar
Patrick von Platen committed
207
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
208
        else:
Patrick von Platen's avatar
Patrick von Platen committed
209
            self.conv = conv
210

211
212
    def forward(self, hidden_states):
        assert hidden_states.shape[1] == self.channels
213
        if self.use_conv and self.padding == 0:
214
            pad = (0, 1, 0, 1)
215
            hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
216

217
218
        assert hidden_states.shape[1] == self.channels
        hidden_states = self.conv(hidden_states)
219

220
        return hidden_states
221
222
223


class FirUpsample2D(nn.Module):
224
225
226
227
228
229
230
231
232
233
234
235
236
    """A 2D FIR upsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
            kernel for the FIR filter.
    """

237
238
239
240
241
242
243
244
245
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.use_conv = use_conv
        self.fir_kernel = fir_kernel
        self.out_channels = out_channels

246
    def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
247
248
249
        """Fused `upsample_2d()` followed by `Conv2d()`.

        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
250
251
252
253
254
255
256
257
258
259
260
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
        arbitrary order.

        Args:
            hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
            weight: Weight tensor of the shape `[filterH, filterW, inChannels,
                outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
            kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
                (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
            factor: Integer upsampling factor (default: 2).
            gain: Scaling factor for signal magnitude (default: 1.0).
261
262

        Returns:
263
264
            output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
            datatype as `hidden_states`.
265
266
267
268
269
        """

        assert isinstance(factor, int) and factor >= 1

        # Setup filter kernel.
270
271
        if kernel is None:
            kernel = [1] * factor
272
273

        # setup kernel
274
        kernel = torch.tensor(kernel, dtype=torch.float32)
275
        if kernel.ndim == 1:
276
277
            kernel = torch.outer(kernel, kernel)
        kernel /= torch.sum(kernel)
278

279
        kernel = kernel * (gain * (factor**2))
280
281

        if self.use_conv:
282
283
284
            convH = weight.shape[2]
            convW = weight.shape[3]
            inC = weight.shape[1]
285

286
            pad_value = (kernel.shape[0] - factor) - (convW - 1)
287
288
289

            stride = (factor, factor)
            # Determine data dimensions.
290
291
292
293
            output_shape = (
                (hidden_states.shape[2] - 1) * factor + convH,
                (hidden_states.shape[3] - 1) * factor + convW,
            )
294
            output_padding = (
295
296
                output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
                output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
297
298
            )
            assert output_padding[0] >= 0 and output_padding[1] >= 0
299
            num_groups = hidden_states.shape[1] // inC
300
301

            # Transpose weights.
302
            weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
Yih-Dar's avatar
Yih-Dar committed
303
            weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
304
            weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
305

306
307
308
            inverse_conv = F.conv_transpose2d(
                hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
            )
309

310
311
312
313
314
            output = upfirdn2d_native(
                inverse_conv,
                torch.tensor(kernel, device=inverse_conv.device),
                pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
            )
315
        else:
316
317
318
319
320
321
            pad_value = kernel.shape[0] - factor
            output = upfirdn2d_native(
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                up=factor,
                pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
322
323
            )

324
        return output
325

326
    def forward(self, hidden_states):
327
        if self.use_conv:
328
            height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
329
            height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
330
        else:
331
            height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
332

333
        return height
334
335
336


class FirDownsample2D(nn.Module):
337
338
339
340
341
342
343
344
345
346
347
348
349
    """A 2D FIR downsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
            kernel for the FIR filter.
    """

350
351
352
353
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
354
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
355
356
357
358
        self.fir_kernel = fir_kernel
        self.use_conv = use_conv
        self.out_channels = out_channels

359
    def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
360
        """Fused `Conv2d()` followed by `downsample_2d()`.
361
362
363
        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
        arbitrary order.
364
365

        Args:
366
367
368
369
370
371
372
373
            hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
            weight:
                Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
                performed by `inChannels = x.shape[0] // numGroups`.
            kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
            factor`, which corresponds to average pooling.
            factor: Integer downsampling factor (default: 2).
            gain: Scaling factor for signal magnitude (default: 1.0).
374
375

        Returns:
376
377
            output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and
            same datatype as `x`.
378
        """
379

380
        assert isinstance(factor, int) and factor >= 1
381
382
        if kernel is None:
            kernel = [1] * factor
383

384
        # setup kernel
385
        kernel = torch.tensor(kernel, dtype=torch.float32)
386
        if kernel.ndim == 1:
387
388
            kernel = torch.outer(kernel, kernel)
        kernel /= torch.sum(kernel)
389

390
        kernel = kernel * gain
391

392
        if self.use_conv:
393
            _, _, convH, convW = weight.shape
394
395
396
397
398
399
400
            pad_value = (kernel.shape[0] - factor) + (convW - 1)
            stride_value = [factor, factor]
            upfirdn_input = upfirdn2d_native(
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                pad=((pad_value + 1) // 2, pad_value // 2),
            )
401
            output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
402
        else:
403
            pad_value = kernel.shape[0] - factor
404
            output = upfirdn2d_native(
405
406
407
408
409
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                down=factor,
                pad=((pad_value + 1) // 2, pad_value // 2),
            )
410

411
        return output
412

413
    def forward(self, hidden_states):
414
        if self.use_conv:
415
416
            downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
            hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
417
        else:
418
            hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
419

420
        return hidden_states
421
422


423
424
425
426
427
428
429
430
431
432
433
434
435
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
class KDownsample2D(nn.Module):
    def __init__(self, pad_mode="reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
        self.pad = kernel_1d.shape[1] // 2 - 1
        self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)

    def forward(self, x):
        x = F.pad(x, (self.pad,) * 4, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
        indices = torch.arange(x.shape[1], device=x.device)
436
437
        kernel = self.kernel.to(weight)[None, :].expand(x.shape[1], -1, -1)
        weight[indices, indices] = kernel
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        return F.conv2d(x, weight, stride=2)


class KUpsample2D(nn.Module):
    def __init__(self, pad_mode="reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
        self.pad = kernel_1d.shape[1] // 2 - 1
        self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)

    def forward(self, x):
        x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
        indices = torch.arange(x.shape[1], device=x.device)
453
454
        kernel = self.kernel.to(weight)[None, :].expand(x.shape[1], -1, -1)
        weight[indices, indices] = kernel
455
456
457
        return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1)


458
class ResnetBlock2D(nn.Module):
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    r"""
    A Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
        groups_out (`int`, *optional*, default to None):
            The number of groups to use for the second normalization layer. if set to None, same as `groups`.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
        non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
        time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
            By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
            "ada_group" for a stronger conditioning with scale and shift.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
476
        kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
477
478
479
480
481
482
483
484
485
486
487
488
            [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
        output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
        use_in_shortcut (`bool`, *optional*, default to `True`):
            If `True`, add a 1x1 nn.conv2d layer for skip-connection.
        up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
        down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
        conv_shortcut_bias (`bool`, *optional*, default to `True`):  If `True`, adds a learnable bias to the
            `conv_shortcut` output.
        conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
            If None, same as `out_channels`.
    """

489
490
491
492
493
494
495
496
497
498
499
500
501
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
502
        skip_time_act=False,
503
        time_embedding_norm="default",  # default, scale_shift, ada_group
504
505
        kernel=None,
        output_scale_factor=1.0,
506
        use_in_shortcut=None,
507
508
        up=False,
        down=False,
509
510
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
511
512
513
514
515
516
517
518
519
520
521
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
522
        self.time_embedding_norm = time_embedding_norm
523
        self.skip_time_act = skip_time_act
524
525
526
527

        if groups_out is None:
            groups_out = groups

528
529
530
531
        if self.time_embedding_norm == "ada_group":
            self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
        else:
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
532
533
534

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

535
        if temb_channels is not None:
Will Berman's avatar
Will Berman committed
536
            if self.time_embedding_norm == "default":
537
                self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
Will Berman's avatar
Will Berman committed
538
            elif self.time_embedding_norm == "scale_shift":
539
540
541
                self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)
            elif self.time_embedding_norm == "ada_group":
                self.time_emb_proj = None
Will Berman's avatar
Will Berman committed
542
543
            else:
                raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
544
545
        else:
            self.time_emb_proj = None
546

547
548
549
550
551
        if self.time_embedding_norm == "ada_group":
            self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
        else:
            self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)

552
        self.dropout = torch.nn.Dropout(dropout)
553
554
        conv_2d_out_channels = conv_2d_out_channels or out_channels
        self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
555
556
557
558

        if non_linearity == "swish":
            self.nonlinearity = lambda x: F.silu(x)
        elif non_linearity == "mish":
559
            self.nonlinearity = nn.Mish()
560
561
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
562
563
        elif non_linearity == "gelu":
            self.nonlinearity = nn.GELU()
564
565
566
567
568

        self.upsample = self.downsample = None
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
569
                self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
570
571
572
573
574
575
576
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
577
                self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
578
579
580
581
582
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

583
        self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
584
585

        self.conv_shortcut = None
586
        if self.use_in_shortcut:
587
588
589
            self.conv_shortcut = torch.nn.Conv2d(
                in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
            )
590

591
592
    def forward(self, input_tensor, temb):
        hidden_states = input_tensor
593

594
595
596
597
598
        if self.time_embedding_norm == "ada_group":
            hidden_states = self.norm1(hidden_states, temb)
        else:
            hidden_states = self.norm1(hidden_states)

599
        hidden_states = self.nonlinearity(hidden_states)
600
601

        if self.upsample is not None:
602
603
604
605
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
606
            input_tensor = self.upsample(input_tensor)
607
            hidden_states = self.upsample(hidden_states)
608
        elif self.downsample is not None:
609
            input_tensor = self.downsample(input_tensor)
610
            hidden_states = self.downsample(hidden_states)
611

612
        hidden_states = self.conv1(hidden_states)
613

614
        if self.time_emb_proj is not None:
615
616
617
            if not self.skip_time_act:
                temb = self.nonlinearity(temb)
            temb = self.time_emb_proj(temb)[:, :, None, None]
Will Berman's avatar
Will Berman committed
618
619

        if temb is not None and self.time_embedding_norm == "default":
620
            hidden_states = hidden_states + temb
621

622
623
624
625
        if self.time_embedding_norm == "ada_group":
            hidden_states = self.norm2(hidden_states, temb)
        else:
            hidden_states = self.norm2(hidden_states)
Will Berman's avatar
Will Berman committed
626
627
628
629
630

        if temb is not None and self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

631
        hidden_states = self.nonlinearity(hidden_states)
632

633
634
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)
635
636

        if self.conv_shortcut is not None:
637
            input_tensor = self.conv_shortcut(input_tensor)
638

639
        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
640

641
        return output_tensor
642

Patrick von Platen's avatar
Patrick von Platen committed
643
644

class Mish(torch.nn.Module):
645
646
    def forward(self, hidden_states):
        return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
Patrick von Platen's avatar
Patrick von Platen committed
647
648


649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# unet_rl.py
def rearrange_dims(tensor):
    if len(tensor.shape) == 2:
        return tensor[:, :, None]
    if len(tensor.shape) == 3:
        return tensor[:, :, None, :]
    elif len(tensor.shape) == 4:
        return tensor[:, :, 0, :]
    else:
        raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
        super().__init__()

        self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
        self.group_norm = nn.GroupNorm(n_groups, out_channels)
        self.mish = nn.Mish()

    def forward(self, x):
        x = self.conv1d(x)
        x = rearrange_dims(x)
        x = self.group_norm(x)
        x = rearrange_dims(x)
        x = self.mish(x)
        return x


# unet_rl.py
class ResidualTemporalBlock1D(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5):
        super().__init__()
        self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
        self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)

        self.time_emb_act = nn.Mish()
        self.time_emb = nn.Linear(embed_dim, out_channels)

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        Args:
            x : [ batch_size x inp_channels x horizon ]
            t : [ batch_size x embed_dim ]

        returns:
            out : [ batch_size x out_channels x horizon ]
        """
        t = self.time_emb_act(t)
        t = self.time_emb(t)
        out = self.conv_in(x) + rearrange_dims(t)
        out = self.conv_out(out)
        return out + self.residual_conv(x)


712
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
713
    r"""Upsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
714
715
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
716
717
718
719
720
721
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
    a: multiple of the upsampling factor.

    Args:
        hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
        kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
Patrick von Platen's avatar
Patrick von Platen committed
722
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
723
724
        factor: Integer upsampling factor (default: 2).
        gain: Scaling factor for signal magnitude (default: 1.0).
Patrick von Platen's avatar
Patrick von Platen committed
725
726

    Returns:
727
        output: Tensor of the shape `[N, C, H * factor, W * factor]`
Patrick von Platen's avatar
Patrick von Platen committed
728
729
    """
    assert isinstance(factor, int) and factor >= 1
730
731
    if kernel is None:
        kernel = [1] * factor
732

733
    kernel = torch.tensor(kernel, dtype=torch.float32)
734
    if kernel.ndim == 1:
735
736
        kernel = torch.outer(kernel, kernel)
    kernel /= torch.sum(kernel)
737

738
    kernel = kernel * (gain * (factor**2))
739
    pad_value = kernel.shape[0] - factor
740
    output = upfirdn2d_native(
741
742
743
744
745
        hidden_states,
        kernel.to(device=hidden_states.device),
        up=factor,
        pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
    )
746
    return output
Patrick von Platen's avatar
Patrick von Platen committed
747
748


749
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
750
    r"""Downsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
751
752
753
754
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
755
756
757

    Args:
        hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
758
        kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
Patrick von Platen's avatar
Patrick von Platen committed
759
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
760
761
        factor: Integer downsampling factor (default: 2).
        gain: Scaling factor for signal magnitude (default: 1.0).
Patrick von Platen's avatar
Patrick von Platen committed
762
763

    Returns:
764
        output: Tensor of the shape `[N, C, H // factor, W // factor]`
Patrick von Platen's avatar
Patrick von Platen committed
765
766
767
    """

    assert isinstance(factor, int) and factor >= 1
768
769
    if kernel is None:
        kernel = [1] * factor
Patrick von Platen's avatar
Patrick von Platen committed
770

771
    kernel = torch.tensor(kernel, dtype=torch.float32)
772
    if kernel.ndim == 1:
773
774
        kernel = torch.outer(kernel, kernel)
    kernel /= torch.sum(kernel)
775

776
    kernel = kernel * gain
777
    pad_value = kernel.shape[0] - factor
778
    output = upfirdn2d_native(
779
780
        hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
    )
781
    return output
782
783


784
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
785
786
787
788
789
    up_x = up_y = up
    down_x = down_y = down
    pad_x0 = pad_y0 = pad[0]
    pad_x1 = pad_y1 = pad[1]

790
791
    _, channel, in_h, in_w = tensor.shape
    tensor = tensor.reshape(-1, in_h, in_w, 1)
792

793
    _, in_h, in_w, minor = tensor.shape
794
795
    kernel_h, kernel_w = kernel.shape

796
    out = tensor.view(-1, in_h, 1, in_w, 1, minor)
797
798
799
800
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
801
    out = out.to(tensor.device)  # Move back to mps if necessary
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883


class TemporalConvLayer(nn.Module):
    """
    Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
    https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
    """

    def __init__(self, in_dim, out_dim=None, dropout=0.0):
        super().__init__()
        out_dim = out_dim or in_dim
        self.in_dim = in_dim
        self.out_dim = out_dim

        # conv layers
        self.conv1 = nn.Sequential(
            nn.GroupNorm(32, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0))
        )
        self.conv2 = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )
        self.conv3 = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )
        self.conv4 = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )

        # zero out the last layer params,so the conv block is identity
        nn.init.zeros_(self.conv4[-1].weight)
        nn.init.zeros_(self.conv4[-1].bias)

    def forward(self, hidden_states, num_frames=1):
        hidden_states = (
            hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
        )

        identity = hidden_states
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.conv2(hidden_states)
        hidden_states = self.conv3(hidden_states)
        hidden_states = self.conv4(hidden_states)

        hidden_states = identity + hidden_states

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
            (hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
        )
        return hidden_states