test_scheduler.py 33.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
15
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
16
import unittest
17
from typing import Dict, List, Tuple
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import numpy as np
import torch

Nathan Lambert's avatar
Nathan Lambert committed
22
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler, ScoreSdeVeScheduler
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28


torch.backends.cuda.matmul.allow_tf32 = False


class SchedulerCommonTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    scheduler_classes = ()
    forward_default_kwargs = ()
Patrick von Platen's avatar
Patrick von Platen committed
31
32

    @property
33
    def dummy_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

39
        sample = torch.rand((batch_size, num_channels, height, width))
Patrick von Platen's avatar
Patrick von Platen committed
40

41
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
42
43

    @property
44
    def dummy_sample_deter(self):
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
51
        sample = torch.arange(num_elems)
52
53
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
54
        sample = sample.permute(3, 0, 1, 2)
Patrick von Platen's avatar
Patrick von Platen committed
55

56
        return sample
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
61

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
62
63
        def model(sample, t, *args):
            return sample * t / (t + 1)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66

        return model

Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

70
71
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
72
        for scheduler_class in self.scheduler_classes:
73
74
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

83
84
85
86
87
88
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

89
90
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
91

92
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

98
99
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
100
        for scheduler_class in self.scheduler_classes:
101
102
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

111
112
113
114
115
116
117
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            torch.manual_seed(0)
118
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
119
            torch.manual_seed(0)
120
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
121

122
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
125
126
        kwargs = dict(self.forward_default_kwargs)

127
128
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
129
        for scheduler_class in self.scheduler_classes:
130
131
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
139

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

140
141
142
143
144
145
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

146
            torch.manual_seed(0)
147
            output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
148
            torch.manual_seed(0)
149
            new_output = new_scheduler.step(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
150

151
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

156
157
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

162
163
            sample = self.dummy_sample
            residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
167
168
169
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

170
171
            output_0 = scheduler.step(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
172

173
            self.assertEqual(output_0.shape, sample.shape)
Patrick von Platen's avatar
Patrick von Platen committed
174
175
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)

179
180
        num_inference_steps = kwargs.pop("num_inference_steps", None)

Patrick von Platen's avatar
Patrick von Platen committed
181
        for scheduler_class in self.scheduler_classes:
182
            sample_pt = self.dummy_sample
183
            residual_pt = 0.1 * sample_pt
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
187
            sample = sample_pt.numpy()
            residual = 0.1 * sample

Patrick von Platen's avatar
Patrick von Platen committed
188
            scheduler_config = self.get_scheduler_config()
189
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

193
194
195
196
197
198
            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

199
200
            output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
201

Patrick von Platen's avatar
Patrick von Platen committed
202
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            outputs_dict = scheduler.step(residual, 0, sample, **kwargs)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            outputs_tuple = scheduler.step(residual, 0, sample, return_dict=False, **kwargs)

            recursive_check(outputs_tuple, outputs_dict)

Patrick von Platen's avatar
Patrick von Platen committed
257
258

class DDPMSchedulerTest(SchedulerCommonTest):
Patrick von Platen's avatar
Patrick von Platen committed
259
    scheduler_classes = (DDPMScheduler,)
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
263
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
264
265
266
267
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "variance_type": "fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
268
            "clip_sample": True,
269
            "tensor_format": "pt",
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
273
        }

        config.update(**kwargs)
        return config
Patrick von Platen's avatar
update  
Patrick von Platen committed
274

Patrick von Platen's avatar
Patrick von Platen committed
275
276
    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
277
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
282
283
284
285
286
287
288
289
290

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_variance_type(self):
        for variance in ["fixed_small", "fixed_large", "other"]:
            self.check_over_configs(variance_type=variance)

291
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
292
293
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
294
295
296
297
298
299
300
301
302
303

    def test_time_indices(self):
        for t in [0, 500, 999]:
            self.check_over_forward(time_step=t)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

304
305
306
307
308
309
310
        assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5

    # TODO Make DDPM Numpy compatible
    def test_pytorch_equal_numpy(self):
        pass
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
314
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
        scheduler = scheduler_class(**scheduler_config)

        num_trained_timesteps = len(scheduler)

        model = self.dummy_model()
320
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
321
322
323

        for t in reversed(range(num_trained_timesteps)):
            # 1. predict noise residual
324
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
325

326
            # 2. predict previous mean of sample x_t-1
327
            pred_prev_sample = scheduler.step(residual, t, sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
328

329
330
331
332
333
334
            # if t > 0:
            #     noise = self.dummy_sample_deter
            #     variance = scheduler.get_variance(t) ** (0.5) * noise
            #
            # sample = pred_prev_sample + variance
            sample = pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
335

336
337
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
338

339
340
        assert abs(result_sum.item() - 259.0883) < 1e-2
        assert abs(result_mean.item() - 0.3374) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
341

Patrick von Platen's avatar
update  
Patrick von Platen committed
342

Patrick von Platen's avatar
Patrick von Platen committed
343
344
class DDIMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMScheduler,)
345
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
Patrick von Platen's avatar
update  
Patrick von Platen committed
346

Patrick von Platen's avatar
Patrick von Platen committed
347
348
    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
349
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
350
351
352
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
Patrick von Platen's avatar
Patrick von Platen committed
353
            "clip_sample": True,
Patrick von Platen's avatar
Patrick von Platen committed
354
        }
Patrick von Platen's avatar
Patrick von Platen committed
355

Patrick von Platen's avatar
Patrick von Platen committed
356
357
358
359
        config.update(**kwargs)
        return config

    def test_timesteps(self):
360
        for timesteps in [100, 500, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
361
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
362
363
364
365
366
367
368
369
370

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

371
    def test_clip_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
372
373
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)
Patrick von Platen's avatar
Patrick von Platen committed
374
375
376
377
378
379
380

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
381
            self.check_over_forward(num_inference_steps=num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
385
386
387
388

    def test_eta(self):
        for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
            self.check_over_forward(time_step=t, eta=eta)

    def test_variance(self):
        scheduler_class = self.scheduler_classes[0]
Patrick von Platen's avatar
Patrick von Platen committed
389
        scheduler_config = self.get_scheduler_config()
Patrick von Platen's avatar
Patrick von Platen committed
390
391
        scheduler = scheduler_class(**scheduler_config)

392
393
394
395
396
397
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
401
402
403

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

404
        num_inference_steps, eta = 10, 0.0
Patrick von Platen's avatar
Patrick von Platen committed
405
406

        model = self.dummy_model()
407
        sample = self.dummy_sample_deter
Patrick von Platen's avatar
Patrick von Platen committed
408

409
410
411
        scheduler.set_timesteps(num_inference_steps)
        for t in scheduler.timesteps:
            residual = model(sample, t)
Patrick von Platen's avatar
Patrick von Platen committed
412

413
            sample = scheduler.step(residual, t, sample, eta).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
414

415
416
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
417

418
419
        assert abs(result_sum.item() - 172.0067) < 1e-2
        assert abs(result_mean.item() - 0.223967) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
420
421
422
423
424
425
426
427


class PNDMSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (PNDMScheduler,)
    forward_default_kwargs = (("num_inference_steps", 50),)

    def get_scheduler_config(self, **kwargs):
        config = {
Nathan Lambert's avatar
Nathan Lambert committed
428
            "num_train_timesteps": 1000,
Patrick von Platen's avatar
Patrick von Platen committed
429
430
431
432
433
434
435
436
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

437
    def check_over_configs(self, time_step=0, **config):
Patrick von Platen's avatar
Patrick von Platen committed
438
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
439
        num_inference_steps = kwargs.pop("num_inference_steps", None)
440
441
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
442
443
444
445
446
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
447
            scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
448
449
450
451
452
453
            # copy over dummy past residuals
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
454
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
455
456
457
                # copy over dummy past residuals
                new_scheduler.ets = dummy_past_residuals[:]

458
459
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
460

461
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
462

463
464
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
465

466
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
467
468
469
470
471

    def test_from_pretrained_save_pretrained(self):
        pass

    def check_over_forward(self, time_step=0, **forward_kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
472
        kwargs = dict(self.forward_default_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
473
        num_inference_steps = kwargs.pop("num_inference_steps", None)
474
475
        sample = self.dummy_sample
        residual = 0.1 * sample
Patrick von Platen's avatar
Patrick von Platen committed
476
477
478
479
480
        dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
Patrick von Platen's avatar
Patrick von Platen committed
481
            scheduler.set_timesteps(num_inference_steps)
482

Nathan Lambert's avatar
Nathan Lambert committed
483
            # copy over dummy past residuals (must be after setting timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
484
485
486
487
488
489
            scheduler.ets = dummy_past_residuals[:]

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)
                # copy over dummy past residuals
Patrick von Platen's avatar
Patrick von Platen committed
490
                new_scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
491

Nathan Lambert's avatar
Nathan Lambert committed
492
493
494
                # copy over dummy past residual (must be after setting timesteps)
                new_scheduler.ets = dummy_past_residuals[:]

495
496
            output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
497

498
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
499

500
501
            output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
502

503
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Patrick von Platen's avatar
Patrick von Platen committed
504

505
506
507
508
509
    def test_pytorch_equal_numpy(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
510
            sample_pt = self.dummy_sample
511
512
513
            residual_pt = 0.1 * sample_pt
            dummy_past_residuals_pt = [residual_pt + 0.2, residual_pt + 0.15, residual_pt + 0.1, residual_pt + 0.05]

514
515
516
517
            sample = sample_pt.numpy()
            residual = 0.1 * sample
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]

518
            scheduler_config = self.get_scheduler_config()
519
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
520
521
522
523
524
525
526
527
528

            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
529
530
531
532
            # copy over dummy past residuals (must be done after set_timesteps)
            scheduler.ets = dummy_past_residuals[:]
            scheduler_pt.ets = dummy_past_residuals_pt[:]

533
534
            output = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step_prk(residual_pt, 1, sample_pt, **kwargs).prev_sample
535
536
            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

537
538
            output = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
            output_pt = scheduler_pt.step_plms(residual_pt, 1, sample_pt, **kwargs).prev_sample
539
540
541

            assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    def test_set_format(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(tensor_format="np", **scheduler_config)
            scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                scheduler_pt.set_timesteps(num_inference_steps)

            for key, value in vars(scheduler).items():
                # we only allow `ets` attr to be a list
                assert not isinstance(value, list) or key in [
                    "ets"
                ], f"Scheduler is not correctly set to np format, the attribute {key} is {type(value)}"

            # check if `scheduler.set_format` does convert correctly attrs to pt format
            for key, value in vars(scheduler_pt).items():
                # we only allow `ets` attr to be a list
                assert not isinstance(value, list) or key in [
                    "ets"
                ], f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
                assert not isinstance(
                    value, np.ndarray
                ), f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

Nathan Lambert's avatar
Nathan Lambert committed
588
589
590
591
            # copy over dummy past residuals (must be done after set_timesteps)
            dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
            scheduler.ets = dummy_past_residuals[:]

592
593
            output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
594
595
596
597

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

598
599
            output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
600
601
602
603

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

Patrick von Platen's avatar
Patrick von Platen committed
604
605
    def test_timesteps(self):
        for timesteps in [100, 1000]:
Nathan Lambert's avatar
Nathan Lambert committed
606
            self.check_over_configs(num_train_timesteps=timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_time_indices(self):
        for t in [1, 5, 10]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

624
    def test_inference_plms_no_past_residuals(self):
Patrick von Platen's avatar
Patrick von Platen committed
625
626
627
628
629
        with self.assertRaises(ValueError):
            scheduler_class = self.scheduler_classes[0]
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

630
            scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
631
632
633
634
635
636
637
638

    def test_full_loop_no_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 10
        model = self.dummy_model()
639
        sample = self.dummy_sample_deter
640
        scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
641

642
643
        for i, t in enumerate(scheduler.prk_timesteps):
            residual = model(sample, t)
644
            sample = scheduler.step_prk(residual, i, sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
645

646
647
        for i, t in enumerate(scheduler.plms_timesteps):
            residual = model(sample, t)
648
            sample = scheduler.step_plms(residual, i, sample).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
649

650
651
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
652

653
654
        assert abs(result_sum.item() - 428.8788) < 1e-2
        assert abs(result_mean.item() - 0.5584) < 1e-3
Nathan Lambert's avatar
Nathan Lambert committed
655
656


657
658
class ScoreSdeVeSchedulerTest(unittest.TestCase):
    # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
Nathan Lambert's avatar
Nathan Lambert committed
659
    scheduler_classes = (ScoreSdeVeScheduler,)
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    forward_default_kwargs = (("seed", 0),)

    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def dummy_model(self):
        def model(sample, t, *args):
            return sample * t / (t + 1)

        return model
Nathan Lambert's avatar
Nathan Lambert committed
693
694
695
696
697
698
699
700

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 2000,
            "snr": 0.15,
            "sigma_min": 0.01,
            "sigma_max": 1348,
            "sampling_eps": 1e-5,
701
            "tensor_format": "pt",  # TODO add test for tensor formats
Nathan Lambert's avatar
Nathan Lambert committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
        }

        config.update(**kwargs)
        return config

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

721
722
            output = scheduler.step_pred(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_pred(residual, time_step, sample, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
723

724
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
725

726
727
            output = scheduler.step_correct(residual, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_correct(residual, sample, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
728

729
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        for scheduler_class in self.scheduler_classes:
            sample = self.dummy_sample
            residual = 0.1 * sample

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_config(tmpdirname)

746
747
            output = scheduler.step_pred(residual, time_step, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_pred(residual, time_step, sample, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
748

749
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
750

751
752
            output = scheduler.step_correct(residual, sample, **kwargs).prev_sample
            new_output = new_scheduler.step_correct(residual, sample, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
753

754
            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
Nathan Lambert's avatar
Nathan Lambert committed
755
756
757
758
759
760
761
762
763
764

    def test_timesteps(self):
        for timesteps in [10, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_sigmas(self):
        for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
            self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)

    def test_time_indices(self):
765
        for t in [0.1, 0.5, 0.75]:
Nathan Lambert's avatar
Nathan Lambert committed
766
767
768
            self.check_over_forward(time_step=t)

    def test_full_loop_no_noise(self):
769
770
        kwargs = dict(self.forward_default_kwargs)

Nathan Lambert's avatar
Nathan Lambert committed
771
772
773
774
775
776
777
778
779
780
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = 3

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_sigmas(num_inference_steps)
781
        scheduler.set_timesteps(num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
782
783
784
785
786
787

        for i, t in enumerate(scheduler.timesteps):
            sigma_t = scheduler.sigmas[i]

            for _ in range(scheduler.correct_steps):
                with torch.no_grad():
788
                    model_output = model(sample, sigma_t)
789
                sample = scheduler.step_correct(model_output, sample, **kwargs).prev_sample
Nathan Lambert's avatar
Nathan Lambert committed
790
791

            with torch.no_grad():
792
                model_output = model(sample, sigma_t)
Patrick von Platen's avatar
Patrick von Platen committed
793

794
            output = scheduler.step_pred(model_output, t, sample, **kwargs)
795
            sample, _ = output.prev_sample, output.prev_sample_mean
Patrick von Platen's avatar
Patrick von Platen committed
796

797
798
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))
Patrick von Platen's avatar
Patrick von Platen committed
799

800
801
        assert abs(result_sum.item() - 14379591680.0) < 1e-2
        assert abs(result_mean.item() - 18723426.0) < 1e-3
Patrick von Platen's avatar
Patrick von Platen committed
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)

        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            sample = self.dummy_sample
            residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

820
821
            output_0 = scheduler.step_pred(residual, 0, sample, **kwargs).prev_sample
            output_1 = scheduler.step_pred(residual, 1, sample, **kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
822
823
824

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)