test_pipelines.py 42.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import random
18
19
20
21
22
23
24
import tempfile
import unittest

import numpy as np
import torch

import PIL
25
from datasets import load_dataset
26
from diffusers import (
27
    AutoencoderKL,
28
29
30
31
32
33
34
35
36
37
38
39
40
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    KarrasVePipeline,
    KarrasVeScheduler,
    LDMPipeline,
    LDMTextToImagePipeline,
    LMSDiscreteScheduler,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
41
42
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
43
    StableDiffusionPipeline,
44
    UNet2DConditionModel,
45
    UNet2DModel,
46
    VQModel,
47
48
)
from diffusers.pipeline_utils import DiffusionPipeline
49
50
51
from diffusers.testing_utils import floats_tensor, slow, torch_device
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
52
53
54
55
56


torch.backends.cuda.matmul.allow_tf32 = False


hysts's avatar
hysts committed
57
58
59
60
61
62
63
64
65
66
67
68
69
def test_progress_bar(capsys):
    model = UNet2DModel(
        block_out_channels=(32, 64),
        layers_per_block=2,
        sample_size=32,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownBlock2D", "AttnDownBlock2D"),
        up_block_types=("AttnUpBlock2D", "UpBlock2D"),
    )
    scheduler = DDPMScheduler(num_train_timesteps=10)

    ddpm = DDPMPipeline(model, scheduler).to(torch_device)
70
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
71
72
73
74
    captured = capsys.readouterr()
    assert "10/10" in captured.err, "Progress bar has to be displayed"

    ddpm.set_progress_bar_config(disable=True)
75
    ddpm(output_type="numpy").images
hysts's avatar
hysts committed
76
77
78
79
    captured = capsys.readouterr()
    assert captured.err == "", "Progress bar should be disabled"


80
class PipelineFastTests(unittest.TestCase):
81
82
83
84
85
86
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vq_model(self):
        torch.manual_seed(0)
        model = VQModel(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=3,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            chunk_size_feed_forward=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

    @property
    def dummy_safety_checker(self):
        def check(images, *args, **kwargs):
            return images, False

        return check

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_ddim(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
196
        ddpm.set_progress_bar_config(disable=None)
197
198

        generator = torch.manual_seed(0)
199
200
201
202
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
203
204

        image_slice = image[0, -3:, -3:, -1]
205
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
206
207
208
209
210
211

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
212
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
213
214
215
216
217
218
219

    def test_pndm_cifar10(self):
        unet = self.dummy_uncond_unet
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
        pndm.to(torch_device)
220
        pndm.set_progress_bar_config(disable=None)
221
222
223
224

        generator = torch.manual_seed(0)
        image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images

225
        generator = torch.manual_seed(0)
226
        image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
227
228

        image_slice = image[0, -3:, -3:, -1]
229
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
230
231
232
233

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
234
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
235
236
237
238
239
240
241
242
243
244

    def test_ldm_text2img(self):
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
        ldm.to(torch_device)
245
        ldm.set_progress_bar_config(disable=None)
246
247
248
249
250
251
252

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy")[
            "sample"
        ]

253
254
255
256
257
258
259
260
261
262
        generator = torch.manual_seed(0)
        image_from_tuple = ldm(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="numpy",
            return_dict=False,
        )[0]

263
        image_slice = image[0, -3:, -3:, -1]
264
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
265
266
267
268

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
269
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
270
271

    def test_stable_diffusion_ddim(self):
272
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        unet = self.dummy_cond_unet
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
296
        sd_pipe = sd_pipe.to(device)
297
        sd_pipe.set_progress_bar_config(disable=None)
298
299

        prompt = "A painting of a squirrel eating a burger"
300

301
302
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
303
        image = output.images
304

305
306
307
308
309
310
311
312
313
        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
314
315

        image_slice = image[0, -3:, -3:, -1]
316
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
317
318
319
320

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5112, 0.4692, 0.4715, 0.5206, 0.4894, 0.5114, 0.5096, 0.4932, 0.4755])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
321
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
322
323

    def test_stable_diffusion_pndm(self):
324
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
341
        sd_pipe = sd_pipe.to(device)
342
        sd_pipe.set_progress_bar_config(disable=None)
343
344

        prompt = "A painting of a squirrel eating a burger"
345
346
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
347

348
349
350
351
352
353
354
355
356
357
358
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
359
360

        image_slice = image[0, -3:, -3:, -1]
361
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
362
363
364
365

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.4937, 0.4649, 0.4716, 0.5145, 0.4889, 0.513, 0.513, 0.4905, 0.4738])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
366
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
367
368

    def test_stable_diffusion_k_lms(self):
369
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
386
        sd_pipe = sd_pipe.to(device)
387
        sd_pipe.set_progress_bar_config(disable=None)
388
389

        prompt = "A painting of a squirrel eating a burger"
390
391
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
392

393
394
395
396
397
398
399
400
401
402
403
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            return_dict=False,
        )[0]
404
405

        image_slice = image[0, -3:, -3:, -1]
406
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
407
408
409
410

        assert image.shape == (1, 128, 128, 3)
        expected_slice = np.array([0.5067, 0.4689, 0.4614, 0.5233, 0.4903, 0.5112, 0.524, 0.5069, 0.4785])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
411
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
412
413
414
415
416
417
418

    def test_score_sde_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = ScoreSdeVeScheduler(tensor_format="pt")

        sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
        sde_ve.to(torch_device)
419
        sde_ve.set_progress_bar_config(disable=None)
420
421

        torch.manual_seed(0)
422
423
424
425
        image = sde_ve(num_inference_steps=2, output_type="numpy").images

        torch.manual_seed(0)
        image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", return_dict=False)[0]
426
427

        image_slice = image[0, -3:, -3:, -1]
428
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
429
430
431
432
433

        assert image.shape == (1, 32, 32, 3)

        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
434
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
435
436
437
438
439
440
441
442

    def test_ldm_uncond(self):
        unet = self.dummy_uncond_unet
        scheduler = DDIMScheduler(tensor_format="pt")
        vae = self.dummy_vq_model

        ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
        ldm.to(torch_device)
443
        ldm.set_progress_bar_config(disable=None)
444
445

        generator = torch.manual_seed(0)
446
447
448
449
        image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
450
451

        image_slice = image[0, -3:, -3:, -1]
452
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
453
454
455
456

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
457
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
458
459
460
461
462
463
464

    def test_karras_ve_pipeline(self):
        unet = self.dummy_uncond_unet
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
465
        pipe.set_progress_bar_config(disable=None)
466
467

        generator = torch.manual_seed(0)
468
469
470
471
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
472
473

        image_slice = image[0, -3:, -3:, -1]
474
475
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

476
477
478
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
479
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
480
481

    def test_stable_diffusion_img2img(self):
482
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
483
484
485
486
487
488
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

489
        init_image = self.dummy_image.to(device)
490
491
492
493
494
495
496
497
498
499
500

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
501
        sd_pipe = sd_pipe.to(device)
502
        sd_pipe.set_progress_bar_config(disable=None)
503
504

        prompt = "A painting of a squirrel eating a burger"
505
506
507
508
509
510
511
512
513
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
514

515
516
517
518
519
520
521
522
523
524
525
526
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )[0]
527
528

        image_slice = image[0, -3:, -3:, -1]
529
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
530
531
532
533

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
534
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        init_image = self.dummy_image.to(device)

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
        )
570
        image = output.images
571

572
573
574
575
576
577
578
579
580
581
582
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            return_dict=False,
        )
        image_from_tuple = output[0]
583
584

        image_slice = image[0, -3:, -3:, -1]
585
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
586
587
588
589

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
590
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
591

592
    def test_stable_diffusion_inpaint(self):
593
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
594
595
596
597
598
599
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(tensor_format="pt", skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

600
        image = self.dummy_image.to(device).permute(0, 2, 3, 1)[0]
601
602
603
604
605
606
607
608
609
610
611
612
613
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))

        # make sure here that pndm scheduler skips prk
        sd_pipe = StableDiffusionInpaintPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=self.dummy_safety_checker,
            feature_extractor=self.dummy_extractor,
        )
614
        sd_pipe = sd_pipe.to(device)
615
        sd_pipe.set_progress_bar_config(disable=None)
616
617

        prompt = "A painting of a squirrel eating a burger"
618
619
620
621
622
623
624
625
626
627
        generator = torch.Generator(device=device).manual_seed(0)
        output = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
        )
628

629
630
631
632
633
634
635
636
637
638
639
640
641
        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = sd_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
            init_image=init_image,
            mask_image=mask_image,
            return_dict=False,
        )[0]
642
643

        image_slice = image[0, -3:, -3:, -1]
644
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
645
646
647
648

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4731, 0.5346, 0.4531, 0.6251, 0.5446, 0.4057, 0.5527, 0.5896, 0.5153])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
649
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
650
651


652
class PipelineTesterMixin(unittest.TestCase):
653
654
655
656
657
658
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

659
660
661
662
663
664
665
666
667
668
669
670
671
672
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
673
        ddpm.to(torch_device)
674
        ddpm.set_progress_bar_config(disable=None)
675
676
677
678

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
679
            new_ddpm.to(torch_device)
680
681
682

        generator = torch.manual_seed(0)

683
        image = ddpm(generator=generator, output_type="numpy").images
684
        generator = generator.manual_seed(0)
685
        new_image = new_ddpm(generator=generator, output_type="numpy").images
686
687
688
689
690
691
692

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

693
        scheduler = DDPMScheduler(num_train_timesteps=10)
694

695
696
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm.to(torch_device)
697
        ddpm.set_progress_bar_config(disable=None)
698
699
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
700
        ddpm_from_hub.set_progress_bar_config(disable=None)
701
702
703

        generator = torch.manual_seed(0)

704
        image = ddpm(generator=generator, output_type="numpy").images
705
        generator = generator.manual_seed(0)
706
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
707
708
709
710
711
712
713

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

714
715
        scheduler = DDPMScheduler(num_train_timesteps=10)

716
717
        # pass unet into DiffusionPipeline
        unet = UNet2DModel.from_pretrained(model_path)
718
719
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
        ddpm_from_hub_custom_model.to(torch_device)
720
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
721

722
723
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
        ddpm_from_hub.to(torch_device)
724
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
725
726
727

        generator = torch.manual_seed(0)

728
        image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
729
        generator = generator.manual_seed(0)
730
        new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
731
732
733
734
735
736
737
738

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

        pipe = DDIMPipeline.from_pretrained(model_path)
739
        pipe.to(torch_device)
740
        pipe.set_progress_bar_config(disable=None)
741
742

        generator = torch.manual_seed(0)
743
        images = pipe(generator=generator, output_type="numpy").images
744
745
746
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

747
        images = pipe(generator=generator, output_type="pil").images
748
749
750
751
752
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
753
        images = pipe(generator=generator).images
754
755
756
757
758
759
760
761
762
763
764
765
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

    @slow
    def test_ddpm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
766
        ddpm.to(torch_device)
767
        ddpm.set_progress_bar_config(disable=None)
768
769

        generator = torch.manual_seed(0)
770
        image = ddpm(generator=generator, output_type="numpy").images
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "google/ddpm-ema-bedroom-256"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler.from_config(model_id)

        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
786
        ddpm.to(torch_device)
787
        ddpm.set_progress_bar_config(disable=None)
788
789

        generator = torch.manual_seed(0)
790
        image = ddpm(generator=generator, output_type="numpy").images
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = DDIMScheduler(tensor_format="pt")

        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
806
        ddim.to(torch_device)
807
        ddim.set_progress_bar_config(disable=None)
808
809

        generator = torch.manual_seed(0)
810
        image = ddim(generator=generator, eta=0.0, output_type="numpy").images
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_pndm_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
826
        pndm.to(torch_device)
827
        pndm.set_progress_bar_config(disable=None)
828
        generator = torch.manual_seed(0)
829
        image = pndm(generator=generator, output_type="numpy").images
830
831
832
833
834
835
836
837
838
839

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
840
        ldm.to(torch_device)
841
        ldm.set_progress_bar_config(disable=None)
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_text2img_fast(self):
        ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
858
        ldm.to(torch_device)
859
        ldm.set_progress_bar_config(disable=None)
860
861
862

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
863
        image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
864
865
866
867
868
869
870
871
872
873
874

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion(self):
        # make sure here that pndm scheduler skips prk
875
876
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
877
        sd_pipe.set_progress_bar_config(disable=None)
878
879
880
881
882
883
884
885

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast("cuda"):
            output = sd_pipe(
                [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np"
            )

886
        image = output.images
887
888
889
890
891
892
893
894
895
896

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8887, 0.915, 0.91, 0.894, 0.909, 0.912, 0.919, 0.925, 0.883])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_fast_ddim(self):
897
898
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1", use_auth_token=True)
        sd_pipe = sd_pipe.to(torch_device)
899
        sd_pipe.set_progress_bar_config(disable=None)
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        sd_pipe.scheduler = scheduler

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        with torch.autocast("cuda"):
            output = sd_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
915
        image = output.images
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.8354, 0.83, 0.866, 0.838, 0.8315, 0.867, 0.836, 0.8584, 0.869])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

    @slow
    def test_score_sde_ve_pipeline(self):
        model_id = "google/ncsnpp-church-256"
        model = UNet2DModel.from_pretrained(model_id)

        scheduler = ScoreSdeVeScheduler.from_config(model_id)

        sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
931
        sde_ve.to(torch_device)
932
        sde_ve.set_progress_bar_config(disable=None)
933
934

        torch.manual_seed(0)
935
        image = sde_ve(num_inference_steps=300, output_type="numpy").images
936
937
938
939
940
941
942
943
944
945
946

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)

        expected_slice = np.array([0.64363, 0.5868, 0.3031, 0.2284, 0.7409, 0.3216, 0.25643, 0.6557, 0.2633])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ldm_uncond(self):
        ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
947
        ldm.to(torch_device)
948
        ldm.set_progress_bar_config(disable=None)
949
950

        generator = torch.manual_seed(0)
951
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    def test_ddpm_ddim_equality(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
968
        ddpm.to(torch_device)
969
        ddpm.set_progress_bar_config(disable=None)
970
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
971
        ddim.to(torch_device)
972
        ddim.set_progress_bar_config(disable=None)
973
974

        generator = torch.manual_seed(0)
975
        ddpm_image = ddpm(generator=generator, output_type="numpy").images
976
977

        generator = torch.manual_seed(0)
978
        ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
979
980
981
982
983
984
985
986
987
988
989
990
991

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_image - ddim_image).max() < 1e-1

    @unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
    def test_ddpm_ddim_equality_batched(self):
        model_id = "google/ddpm-cifar10-32"

        unet = UNet2DModel.from_pretrained(model_id)
        ddpm_scheduler = DDPMScheduler(tensor_format="pt")
        ddim_scheduler = DDIMScheduler(tensor_format="pt")

        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
992
        ddpm.to(torch_device)
993
        ddpm.set_progress_bar_config(disable=None)
994

995
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
996
        ddim.to(torch_device)
997
        ddim.set_progress_bar_config(disable=None)
998
999

        generator = torch.manual_seed(0)
1000
        ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

        generator = torch.manual_seed(0)
        ddim_images = ddim(batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy")[
            "sample"
        ]

        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1

    @slow
    def test_karras_ve_pipeline(self):
        model_id = "google/ncsnpp-celebahq-256"
        model = UNet2DModel.from_pretrained(model_id)
        scheduler = KarrasVeScheduler(tensor_format="pt")

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
1017
        pipe.to(torch_device)
1018
        pipe.set_progress_bar_config(disable=None)
1019
1020

        generator = torch.manual_seed(0)
1021
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.26815, 0.1581, 0.2658, 0.23248, 0.1550, 0.2539, 0.1131, 0.1024, 0.0837])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_lms_stable_diffusion_pipeline(self):
        model_id = "CompVis/stable-diffusion-v1-1"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(torch_device)
1033
        pipe.set_progress_bar_config(disable=None)
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        scheduler = LMSDiscreteScheduler.from_config(model_id, subfolder="scheduler", use_auth_token=True)
        pipe.scheduler = scheduler

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")[
            "sample"
        ]

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9077, 0.9254, 0.9181, 0.9227, 0.9213, 0.9367, 0.9399, 0.9406, 0.9024])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
1047
1048
1049
1050
1051
1052

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_img2img_pipeline(self):
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

1053
        init_image = ds[2]["image"].resize((768, 512))
1054
1055
1056
1057
1058
        output_image = ds[0]["image"].resize((768, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, use_auth_token=True)
        pipe.to(torch_device)
1059
        pipe.set_progress_bar_config(disable=None)
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)[
            "sample"
        ][0]

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
1076
    def test_stable_diffusion_img2img_pipeline_k_lms(self):
1077
1078
1079
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

        init_image = ds[2]["image"].resize((768, 512))
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        output_image = ds[1]["image"].resize((768, 512))

        lms = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, scheduler=lms, use_auth_token=True)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
1092
1093
        output = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5, generator=generator)
        image = output.images[0]
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-4

    @slow
    @unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
    def test_stable_diffusion_in_paint_pipeline(self):
        ds = load_dataset("hf-internal-testing/diffusers-images", split="train")

        init_image = ds[3]["image"].resize((768, 512))
        mask_image = ds[4]["image"].resize((768, 512))
        output_image = ds[5]["image"].resize((768, 512))
1109
1110
1111
1112

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, use_auth_token=True)
        pipe.to(torch_device)
1113
        pipe.set_progress_bar_config(disable=None)
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

        prompt = "A red cat sitting on a parking bench"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe(
            prompt=prompt,
            init_image=init_image,
            mask_image=mask_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
1125
        ).images[0]
1126
1127
1128
1129
1130
1131

        expected_array = np.array(output_image)
        sampled_array = np.array(image)

        assert sampled_array.shape == (512, 768, 3)
        assert np.max(np.abs(sampled_array - expected_array)) < 1e-3