scheduling_pndm.py 12.2 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
from .scheduling_utils import SchedulerMixin, SchedulerOutput
25
26
27
28


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
31

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
35
36
37
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
38

39
40
41
42
43
44
45
46
47
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50


class PNDMScheduler(SchedulerMixin, ConfigMixin):
51
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
52
53
    def __init__(
        self,
Partho's avatar
Partho committed
54
55
56
57
58
59
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        tensor_format: str = "pt",
        skip_prk_steps: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
    ):

        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
63
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
64
65
66
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
67
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
68
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
69
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

Patrick von Platen's avatar
Patrick von Platen committed
78
79
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
80
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
84
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
85
        self.counter = 0
86
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
87
88
        self.ets = []

89
90
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
91
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
92
        self._offset = 0
93
94
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
95
        self.timesteps = None
96
97
98

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
99

Partho's avatar
Partho committed
100
    def set_timesteps(self, num_inference_steps: int, offset: int = 0) -> torch.FloatTensor:
101
        self.num_inference_steps = num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
102
        self._timesteps = list(
Nathan Lambert's avatar
Nathan Lambert committed
103
104
            range(0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps)
        )
105
        self._offset = offset
106
        self._timesteps = np.array([t + self._offset for t in self._timesteps])
107
108
109
110
111

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
112
            self.prk_timesteps = np.array([])
113
114
115
            self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[
                ::-1
            ].copy()
116
117
118
119
        else:
            prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
                np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )
120
121
122
123
            self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy()
            self.plms_timesteps = self._timesteps[:-3][
                ::-1
            ].copy()  # we copy to avoid having negative strides which are not supported by torch.from_numpy
Patrick von Platen's avatar
Patrick von Platen committed
124

125
        self.timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64)
Patrick von Platen's avatar
Patrick von Platen committed
126

127
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
128
        self.counter = 0
129
        self.set_format(tensor_format=self.tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
130

Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
136
137
138
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:

139
        if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps:
140
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
141
        else:
142
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict)
Patrick von Platen's avatar
Patrick von Platen committed
143

144
145
    def step_prk(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
146
        model_output: Union[torch.FloatTensor, np.ndarray],
147
148
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
149
150
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
151
152
153
154
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
        """
155
156
157
158
159
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
        prev_timestep = max(timestep - diff_to_prev, self.prk_timesteps[-1])
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
163

Patrick von Platen's avatar
Patrick von Platen committed
164
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
165
166
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
167
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
168
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
169
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
170
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
171
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
172
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
173
174
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
175

Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
179
180
181
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

182
183
184
185
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
186

187
188
    def step_plms(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
189
        model_output: Union[torch.FloatTensor, np.ndarray],
190
191
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
192
193
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
Nathan Lambert's avatar
Nathan Lambert committed
194
195
196
197
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
        """
198
199
200
201
202
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

203
        if not self.config.skip_prk_steps and len(self.ets) < 3:
Patrick von Platen's avatar
Patrick von Platen committed
204
205
206
207
208
209
210
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
211
        prev_timestep = max(timestep - self.config.num_train_timesteps // self.num_inference_steps, 0)
Patrick von Platen's avatar
Patrick von Platen committed
212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        if self.counter != 1:
            self.ets.append(model_output)
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps

        if len(self.ets) == 1 and self.counter == 0:
            model_output = model_output
            self.cur_sample = sample
        elif len(self.ets) == 1 and self.counter == 1:
            model_output = (model_output + self.ets[-1]) / 2
            sample = self.cur_sample
            self.cur_sample = None
        elif len(self.ets) == 2:
            model_output = (3 * self.ets[-1] - self.ets[-2]) / 2
        elif len(self.ets) == 3:
            model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
232

Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

236
237
238
239
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
240

Patrick von Platen's avatar
Patrick von Platen committed
241
    def _get_prev_sample(self, sample, timestep, timestep_prev, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
247
248
249
250
251
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
252
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
253
        # prev_sample -> x_(t−δ)
254
255
        alpha_prod_t = self.alphas_cumprod[timestep + 1 - self._offset]
        alpha_prod_t_prev = self.alphas_cumprod[timestep_prev + 1 - self._offset]
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
260
261
262
263
264
265
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
266
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
267
268
269
270
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
271
272
273
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
274
275

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
276

Partho's avatar
Partho committed
277
278
279
280
281
282
283
    def add_noise(
        self,
        original_samples: Union[torch.FloatTensor, np.ndarray],
        noise: Union[torch.FloatTensor, np.ndarray],
        timesteps: Union[torch.IntTensor, np.ndarray],
    ) -> torch.Tensor:

284
285
286
287
288
289
290
291
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
292
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
293
        return self.config.num_train_timesteps