pipeline_animatediff.py 41.4 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Dhruv Nair's avatar
Dhruv Nair committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import Any, Callable, Dict, List, Optional, Union
Dhruv Nair's avatar
Dhruv Nair committed
17
18

import torch
19
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
Dhruv Nair's avatar
Dhruv Nair committed
20

21
from ...image_processor import PipelineImageInput
22
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
23
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
Dhruv Nair's avatar
Dhruv Nair committed
24
from ...models.lora import adjust_lora_scale_text_encoder
25
from ...models.unets.unet_motion_model import MotionAdapter
Dhruv Nair's avatar
Dhruv Nair committed
26
27
28
29
30
31
32
33
from ...schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
34
35
from ...utils import (
    USE_PEFT_BACKEND,
Aryan V S's avatar
Aryan V S committed
36
    deprecate,
hlky's avatar
hlky committed
37
    is_torch_xla_available,
38
39
40
41
42
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
43
from ...utils.torch_utils import randn_tensor
44
from ...video_processor import VideoProcessor
45
from ..free_init_utils import FreeInitMixin
Aryan's avatar
Aryan committed
46
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
47
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
Aryan V S's avatar
Aryan V S committed
48
from .pipeline_output import AnimateDiffPipelineOutput
Dhruv Nair's avatar
Dhruv Nair committed
49
50


hlky's avatar
hlky committed
51
52
53
54
55
56
57
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

Dhruv Nair's avatar
Dhruv Nair committed
58
59
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

hlky's avatar
hlky committed
60

Dhruv Nair's avatar
Dhruv Nair committed
61
62
63
64
65
66
67
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
        >>> from diffusers.utils import export_to_gif

68
        >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
Dhruv Nair's avatar
Dhruv Nair committed
69
70
71
72
73
74
75
76
77
        >>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
        >>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
        >>> output = pipe(prompt="A corgi walking in the park")
        >>> frames = output.frames[0]
        >>> export_to_gif(frames, "animation.gif")
        ```
"""


78
class AnimateDiffPipeline(
79
80
81
82
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    IPAdapterMixin,
83
    StableDiffusionLoraLoaderMixin,
84
    FreeInitMixin,
Aryan's avatar
Aryan committed
85
    AnimateDiffFreeNoiseMixin,
86
    FromSingleFileMixin,
87
):
Dhruv Nair's avatar
Dhruv Nair committed
88
89
90
91
92
93
    r"""
    Pipeline for text-to-video generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

94
95
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
96
97
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
98
99
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

Dhruv Nair's avatar
Dhruv Nair committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            A [`~transformers.CLIPTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
        motion_adapter ([`MotionAdapter`]):
            A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
    """
115

116
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
117
    _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
Aryan V S's avatar
Aryan V S committed
118
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
Dhruv Nair's avatar
Dhruv Nair committed
119
120
121
122
123
124

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
125
        unet: Union[UNet2DConditionModel, UNetMotionModel],
Dhruv Nair's avatar
Dhruv Nair committed
126
127
128
129
130
131
132
133
134
        motion_adapter: MotionAdapter,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
135
136
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
Dhruv Nair's avatar
Dhruv Nair committed
137
138
    ):
        super().__init__()
139
140
        if isinstance(unet, UNet2DConditionModel):
            unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
Dhruv Nair's avatar
Dhruv Nair committed
141
142
143
144
145
146
147
148

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            motion_adapter=motion_adapter,
            scheduler=scheduler,
149
150
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
Dhruv Nair's avatar
Dhruv Nair committed
151
        )
hlky's avatar
hlky committed
152
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
153
        self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
Dhruv Nair's avatar
Dhruv Nair committed
154
155
156
157
158
159
160
161
162

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
163
164
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
Dhruv Nair's avatar
Dhruv Nair committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
184
            prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
185
186
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
187
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
188
189
190
191
192
193
194
195
196
197
198
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
199
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
Dhruv Nair's avatar
Dhruv Nair committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
216
            # textual inversion: process multi-vector tokens if necessary
Dhruv Nair's avatar
Dhruv Nair committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
298
            # textual inversion: process multi-vector tokens if necessary
Dhruv Nair's avatar
Dhruv Nair committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

331
        if self.text_encoder is not None:
332
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
333
334
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)
Dhruv Nair's avatar
Dhruv Nair committed
335
336
337

        return prompt_embeds, negative_prompt_embeds

338
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
339
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
340
341
342
343
344
345
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
360

361
            return image_embeds, uncond_image_embeds
362

363
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
364
    def prepare_ip_adapter_image_embeds(
365
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
366
    ):
YiYi Xu's avatar
YiYi Xu committed
367
368
369
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
370
371
372
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
373

374
375
376
377
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )
378

379
380
381
382
383
384
385
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
386

YiYi Xu's avatar
YiYi Xu committed
387
                image_embeds.append(single_image_embeds[None, :])
388
                if do_classifier_free_guidance:
YiYi Xu's avatar
YiYi Xu committed
389
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
390
        else:
391
392
393
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
YiYi Xu's avatar
YiYi Xu committed
394
                    negative_image_embeds.append(single_negative_image_embeds)
395
396
                image_embeds.append(single_image_embeds)

YiYi Xu's avatar
YiYi Xu committed
397
398
399
400
401
402
403
404
405
406
407
        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds
408

409
    def decode_latents(self, latents, decode_chunk_size: int = 16):
Dhruv Nair's avatar
Dhruv Nair committed
410
411
412
413
414
        latents = 1 / self.vae.config.scaling_factor * latents

        batch_size, channels, num_frames, height, width = latents.shape
        latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

Aryan's avatar
Aryan committed
415
        video = []
416
417
        for i in range(0, latents.shape[0], decode_chunk_size):
            batch_latents = latents[i : i + decode_chunk_size]
Aryan's avatar
Aryan committed
418
419
420
421
422
            batch_latents = self.vae.decode(batch_latents).sample
            video.append(batch_latents)

        video = torch.cat(video)
        video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
Dhruv Nair's avatar
Dhruv Nair committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
454
455
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
456
        callback_on_step_end_tensor_inputs=None,
Dhruv Nair's avatar
Dhruv Nair committed
457
458
459
460
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

461
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
Dhruv Nair's avatar
Dhruv Nair committed
462
463
464
465
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
466
467
468
469
470
471
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )
Dhruv Nair's avatar
Dhruv Nair committed
472
473
474
475
476
477
478
479
480
481

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
Aryan's avatar
Aryan committed
482
483
        elif prompt is not None and not isinstance(prompt, (str, list, dict)):
            raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)=}")
Dhruv Nair's avatar
Dhruv Nair committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

499
500
501
502
503
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

504
505
506
507
508
        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
509
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
510
                raise ValueError(
511
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
512
513
                )

Dhruv Nair's avatar
Dhruv Nair committed
514
515
516
    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
Aryan's avatar
Aryan committed
517
518
519
520
521
522
523
524
525
526
527
528
        # If FreeNoise is enabled, generate latents as described in Equation (7) of [FreeNoise](https://arxiv.org/abs/2310.15169)
        if self.free_noise_enabled:
            latents = self._prepare_latents_free_noise(
                batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents
            )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

Dhruv Nair's avatar
Dhruv Nair committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

Aryan V S's avatar
Aryan V S committed
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

Aryan's avatar
Aryan committed
569
570
571
572
    @property
    def interrupt(self):
        return self._interrupt

Dhruv Nair's avatar
Dhruv Nair committed
573
    @torch.no_grad()
574
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Dhruv Nair's avatar
Dhruv Nair committed
575
576
    def __call__(
        self,
Aryan's avatar
Aryan committed
577
        prompt: Optional[Union[str, List[str]]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
578
579
580
581
582
583
584
585
586
        num_frames: Optional[int] = 16,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
587
588
589
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
590
        ip_adapter_image: Optional[PipelineImageInput] = None,
591
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
592
593
594
595
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
Aryan V S's avatar
Aryan V S committed
596
597
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
598
        decode_chunk_size: int = 16,
Aryan V S's avatar
Aryan V S committed
599
        **kwargs,
Dhruv Nair's avatar
Dhruv Nair committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated video.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated video.
            num_frames (`int`, *optional*, defaults to 16):
                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
                amounts to 2 seconds of video.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
629
            latents (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
630
631
632
633
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
                `(batch_size, num_channel, num_frames, height, width)`.
634
            prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
635
636
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
637
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Dhruv Nair's avatar
Dhruv Nair committed
638
639
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
Aryan V S's avatar
Aryan V S committed
640
641
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
642
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
643
644
645
646
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
Dhruv Nair's avatar
Dhruv Nair committed
647
            output_type (`str`, *optional*, defaults to `"pil"`):
648
                The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
Dhruv Nair's avatar
Dhruv Nair committed
649
650
651
652
653
654
655
656
657
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Aryan V S's avatar
Aryan V S committed
658
659
660
661
662
663
664
665
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
666
                `._callback_tensor_inputs` attribute of your pipeline class.
667
            decode_chunk_size (`int`, defaults to `16`):
Aryan's avatar
Aryan committed
668
                The number of frames to decode at a time when calling `decode_latents` method.
Aryan V S's avatar
Aryan V S committed
669

Dhruv Nair's avatar
Dhruv Nair committed
670
671
672
        Examples:

        Returns:
673
674
            [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
Dhruv Nair's avatar
Dhruv Nair committed
675
676
                returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
        """
Aryan V S's avatar
Aryan V S committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

Dhruv Nair's avatar
Dhruv Nair committed
694
695
696
697
698
699
700
701
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
Aryan V S's avatar
Aryan V S committed
702
703
704
705
706
707
708
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
709
710
            ip_adapter_image,
            ip_adapter_image_embeds,
Aryan V S's avatar
Aryan V S committed
711
            callback_on_step_end_tensor_inputs,
Dhruv Nair's avatar
Dhruv Nair committed
712
713
        )

Aryan V S's avatar
Aryan V S committed
714
715
716
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
Aryan's avatar
Aryan committed
717
        self._interrupt = False
Aryan V S's avatar
Aryan V S committed
718

Dhruv Nair's avatar
Dhruv Nair committed
719
        # 2. Define call parameters
Aryan's avatar
Aryan committed
720
        if prompt is not None and isinstance(prompt, (str, dict)):
Dhruv Nair's avatar
Dhruv Nair committed
721
722
723
724
725
726
727
728
729
730
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
Aryan V S's avatar
Aryan V S committed
731
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
Dhruv Nair's avatar
Dhruv Nair committed
732
        )
Aryan's avatar
Aryan committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        if self.free_noise_enabled:
            prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
                prompt=prompt,
                num_frames=num_frames,
                device=device,
                num_videos_per_prompt=num_videos_per_prompt,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
                negative_prompt=negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                lora_scale=text_encoder_lora_scale,
                clip_skip=self.clip_skip,
            )
        else:
            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                prompt,
                device,
                num_videos_per_prompt,
                self.do_classifier_free_guidance,
                negative_prompt,
                prompt_embeds=prompt_embeds,
                negative_prompt_embeds=negative_prompt_embeds,
                lora_scale=text_encoder_lora_scale,
                clip_skip=self.clip_skip,
            )

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            if self.do_classifier_free_guidance:
                prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

            prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
Dhruv Nair's avatar
Dhruv Nair committed
766

767
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
768
            image_embeds = self.prepare_ip_adapter_image_embeds(
769
770
771
772
773
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_videos_per_prompt,
                self.do_classifier_free_guidance,
774
            )
775

Dhruv Nair's avatar
Dhruv Nair committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
Aryan V S's avatar
Aryan V S committed
796
797

        # 7. Add image embeds for IP-Adapter
Aryan's avatar
Aryan committed
798
799
800
801
802
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )
Dhruv Nair's avatar
Dhruv Nair committed
803

804
805
806
807
808
809
810
811
812
        num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
        for free_init_iter in range(num_free_init_iters):
            if self.free_init_enabled:
                latents, timesteps = self._apply_free_init(
                    latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
                )

            self._num_timesteps = len(timesteps)
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
813
814

            # 8. Denoising loop
815
            with self.progress_bar(total=self._num_timesteps) as progress_bar:
816
                for i, t in enumerate(timesteps):
Aryan's avatar
Aryan committed
817
818
819
                    if self.interrupt:
                        continue

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                    ).sample

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                        latents = callback_outputs.pop("latents", latents)
                        prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                        negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            callback(i, t, latents)

hlky's avatar
hlky committed
857
858
859
                    if XLA_AVAILABLE:
                        xm.mark_step()

860
        # 9. Post processing
861
        if output_type == "latent":
862
863
            video = latents
        else:
864
            video_tensor = self.decode_latents(latents, decode_chunk_size)
865
            video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
Dhruv Nair's avatar
Dhruv Nair committed
866

867
        # 10. Offload all models
Aryan V S's avatar
Aryan V S committed
868
        self.maybe_free_model_hooks()
Dhruv Nair's avatar
Dhruv Nair committed
869

870
871
872
873
        if not return_dict:
            return (video,)

        return AnimateDiffPipelineOutput(frames=video)