pipeline_animatediff.py 41.6 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Dhruv Nair's avatar
Dhruv Nair committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import Any, Callable, Dict, List, Optional, Union
Dhruv Nair's avatar
Dhruv Nair committed
17
18
19

import numpy as np
import torch
20
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
Dhruv Nair's avatar
Dhruv Nair committed
21

22
23
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
24
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
Dhruv Nair's avatar
Dhruv Nair committed
25
from ...models.lora import adjust_lora_scale_text_encoder
26
from ...models.unets.unet_motion_model import MotionAdapter
Dhruv Nair's avatar
Dhruv Nair committed
27
28
29
30
31
32
33
34
from ...schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
35
36
from ...utils import (
    USE_PEFT_BACKEND,
Aryan V S's avatar
Aryan V S committed
37
    deprecate,
38
39
40
41
42
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
43
from ...utils.torch_utils import randn_tensor
44
from ..free_init_utils import FreeInitMixin
Dhruv Nair's avatar
Dhruv Nair committed
45
from ..pipeline_utils import DiffusionPipeline
Aryan V S's avatar
Aryan V S committed
46
from .pipeline_output import AnimateDiffPipelineOutput
Dhruv Nair's avatar
Dhruv Nair committed
47
48
49
50
51
52
53
54
55
56
57


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
        >>> from diffusers.utils import export_to_gif

58
        >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
Dhruv Nair's avatar
Dhruv Nair committed
59
60
61
62
63
64
65
66
67
        >>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
        >>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
        >>> output = pipe(prompt="A corgi walking in the park")
        >>> frames = output.frames[0]
        >>> export_to_gif(frames, "animation.gif")
        ```
"""


68
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
Dhruv Nair's avatar
Dhruv Nair committed
69
70
71
72
73
74
75
76
    batch_size, channels, num_frames, height, width = video.shape
    outputs = []
    for batch_idx in range(batch_size):
        batch_vid = video[batch_idx].permute(1, 0, 2, 3)
        batch_output = processor.postprocess(batch_vid, output_type)

        outputs.append(batch_output)

77
78
79
80
81
82
83
84
85
    if output_type == "np":
        outputs = np.stack(outputs)

    elif output_type == "pt":
        outputs = torch.stack(outputs)

    elif not output_type == "pil":
        raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]")

Dhruv Nair's avatar
Dhruv Nair committed
86
87
88
    return outputs


89
90
91
class AnimateDiffPipeline(
    DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FreeInitMixin
):
Dhruv Nair's avatar
Dhruv Nair committed
92
93
94
95
96
97
    r"""
    Pipeline for text-to-video generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

98
99
100
101
102
103
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

Dhruv Nair's avatar
Dhruv Nair committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer (`CLIPTokenizer`):
            A [`~transformers.CLIPTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
        motion_adapter ([`MotionAdapter`]):
            A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
    """
119

120
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
121
    _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
Aryan V S's avatar
Aryan V S committed
122
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
Dhruv Nair's avatar
Dhruv Nair committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        motion_adapter: MotionAdapter,
        scheduler: Union[
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
        ],
139
140
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
Dhruv Nair's avatar
Dhruv Nair committed
141
142
    ):
        super().__init__()
143
144
        if isinstance(unet, UNet2DConditionModel):
            unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
Dhruv Nair's avatar
Dhruv Nair committed
145
146
147
148
149
150
151
152

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            motion_adapter=motion_adapter,
            scheduler=scheduler,
153
154
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
Dhruv Nair's avatar
Dhruv Nair committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
220
            # textual inversion: process multi-vector tokens if necessary
Dhruv Nair's avatar
Dhruv Nair committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
302
            # textual inversion: process multi-vector tokens if necessary
Dhruv Nair's avatar
Dhruv Nair committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

341
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
342
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
343
344
345
346
347
348
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
363

364
            return image_embeds, uncond_image_embeds
365

366
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
367
368
369
370
371
372
    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
373

374
375
376
377
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )
378

379
380
381
382
383
384
385
386
387
388
389
390
            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
                single_negative_image_embeds = torch.stack(
                    [single_negative_image_embeds] * num_images_per_prompt, dim=0
                )
391

392
393
394
                if self.do_classifier_free_guidance:
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                    single_image_embeds = single_image_embeds.to(device)
395

396
397
398
                image_embeds.append(single_image_embeds)
        else:
            image_embeds = ip_adapter_image_embeds
399
400
        return image_embeds

Dhruv Nair's avatar
Dhruv Nair committed
401
402
403
404
405
406
407
408
    # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents

        batch_size, channels, num_frames, height, width = latents.shape
        latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

        image = self.vae.decode(latents).sample
409
        video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
Dhruv Nair's avatar
Dhruv Nair committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        video = video.float()
        return video

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
502
503
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
504
        callback_on_step_end_tensor_inputs=None,
Dhruv Nair's avatar
Dhruv Nair committed
505
506
507
508
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

509
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
Dhruv Nair's avatar
Dhruv Nair committed
510
511
512
513
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
514
515
516
517
518
519
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )
Dhruv Nair's avatar
Dhruv Nair committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

547
548
549
550
551
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

Dhruv Nair's avatar
Dhruv Nair committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            num_frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

Aryan V S's avatar
Aryan V S committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

Dhruv Nair's avatar
Dhruv Nair committed
601
    @torch.no_grad()
602
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Dhruv Nair's avatar
Dhruv Nair committed
603
604
    def __call__(
        self,
605
        prompt: Union[str, List[str]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
606
607
608
609
610
611
612
613
614
615
616
617
        num_frames: Optional[int] = 16,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_videos_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
618
        ip_adapter_image: Optional[PipelineImageInput] = None,
619
        ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
Dhruv Nair's avatar
Dhruv Nair committed
620
621
622
623
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
Aryan V S's avatar
Aryan V S committed
624
625
626
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
Dhruv Nair's avatar
Dhruv Nair committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated video.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated video.
            num_frames (`int`, *optional*, defaults to 16):
                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
                amounts to 2 seconds of video.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
                `(batch_size, num_channel, num_frames, height, width)`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
Aryan V S's avatar
Aryan V S committed
667
668
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
669
670
671
            ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
Dhruv Nair's avatar
Dhruv Nair committed
672
673
674
675
676
677
678
679
680
681
682
683
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
                `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Aryan V S's avatar
Aryan V S committed
684
685
686
687
688
689
690
691
692
693
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeine class.

Dhruv Nair's avatar
Dhruv Nair committed
694
695
696
697
698
699
700
        Examples:

        Returns:
            [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
                returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
        """
Aryan V S's avatar
Aryan V S committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

Dhruv Nair's avatar
Dhruv Nair committed
718
719
720
721
722
723
724
725
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
Aryan V S's avatar
Aryan V S committed
726
727
728
729
730
731
732
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
733
734
            ip_adapter_image,
            ip_adapter_image_embeds,
Aryan V S's avatar
Aryan V S committed
735
            callback_on_step_end_tensor_inputs,
Dhruv Nair's avatar
Dhruv Nair committed
736
737
        )

Aryan V S's avatar
Aryan V S committed
738
739
740
741
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

Dhruv Nair's avatar
Dhruv Nair committed
742
743
744
745
746
747
748
749
750
751
752
753
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
Aryan V S's avatar
Aryan V S committed
754
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
Dhruv Nair's avatar
Dhruv Nair committed
755
756
757
758
759
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_videos_per_prompt,
Aryan V S's avatar
Aryan V S committed
760
            self.do_classifier_free_guidance,
Dhruv Nair's avatar
Dhruv Nair committed
761
762
763
764
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
Aryan V S's avatar
Aryan V S committed
765
            clip_skip=self.clip_skip,
Dhruv Nair's avatar
Dhruv Nair committed
766
767
768
769
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
Aryan V S's avatar
Aryan V S committed
770
        if self.do_classifier_free_guidance:
Dhruv Nair's avatar
Dhruv Nair committed
771
772
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

773
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
774
            image_embeds = self.prepare_ip_adapter_image_embeds(
775
                ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt
776
            )
777

Dhruv Nair's avatar
Dhruv Nair committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
Aryan V S's avatar
Aryan V S committed
798
799

        # 7. Add image embeds for IP-Adapter
800
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
Dhruv Nair's avatar
Dhruv Nair committed
801

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
        num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
        for free_init_iter in range(num_free_init_iters):
            if self.free_init_enabled:
                latents, timesteps = self._apply_free_init(
                    latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
                )

            self._num_timesteps = len(timesteps)
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        cross_attention_kwargs=cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                    ).sample

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                        latents = callback_outputs.pop("latents", latents)
                        prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                        negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            callback(i, t, latents)

        if output_type == "latent":
            return AnimateDiffPipelineOutput(frames=latents)
Dhruv Nair's avatar
Dhruv Nair committed
852

853
854
        video_tensor = self.decode_latents(latents)
        video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
Dhruv Nair's avatar
Dhruv Nair committed
855

Aryan V S's avatar
Aryan V S committed
856
857
        # 9. Offload all models
        self.maybe_free_model_hooks()
Dhruv Nair's avatar
Dhruv Nair committed
858

859
860
861
862
        if not return_dict:
            return (video,)

        return AnimateDiffPipelineOutput(frames=video)