Unverified Commit 9112028e authored by Aryan V S's avatar Aryan V S Committed by GitHub
Browse files

FreeInit (#6315)



* freeinit

* update freeinit implementation based on review
Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>

* fix

* another fix

* refactor

* fix timesteps missing bug

* apply suggestions from review
Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>

* add test for freeinit

* apply suggestions from review
Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>

* refactor

* fix test

* fix tensor not on same device

* update

* remove return_intermediate_results

* fix broken freeinit test

* update animatediff docs

---------
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
parent dce06680
......@@ -235,6 +235,62 @@ export_to_gif(frames, "animation.gif")
</tr>
</table>
## Using FreeInit
[FreeInit: Bridging Initialization Gap in Video Diffusion Models](https://arxiv.org/abs/2312.07537) by Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu.
FreeInit is an effective method that improves temporal consistency and overall quality of videos generated using video-diffusion-models without any addition training. It can be applied to AnimateDiff, ModelScope, VideoCrafter and various other video generation models seamlessly at inference time, and works by iteratively refining the latent-initialization noise. More details can be found it the paper.
The following example demonstrates the usage of FreeInit.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
clip_sample=False,
timestep_spacing="linspace",
steps_offset=1
)
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# enable FreeInit
# Refer to the enable_free_init documentation for a full list of configurable parameters
pipe.enable_free_init(method="butterworth", use_fast_sampling=True)
# run inference
output = pipe(
prompt="a panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(666),
)
# disable FreeInit
pipe.disable_free_init()
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<Tip warning={true}>
FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the `num_iters` parameter that is set when enabling it. Setting the `use_fast_sampling` parameter to `True` can improve the overall performance (at the cost of lower quality compared to when `use_fast_sampling=False` but still better results than vanilla video generation models).
</Tip>
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
......@@ -248,6 +304,8 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
- __call__
- enable_freeu
- disable_freeu
- enable_free_init
- disable_free_init
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
......
......@@ -38,8 +38,8 @@ class AnimateDiffPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
......@@ -233,6 +233,43 @@ class AnimateDiffPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
inputs["prompt_embeds"] = torch.randn((1, 4, 32), device=torch_device)
pipe(**inputs)
def test_free_init(self):
components = self.get_dummy_components()
pipe: AnimateDiffPipeline = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs_normal = self.get_dummy_inputs(torch_device)
frames_normal = pipe(**inputs_normal).frames[0]
free_init_generator = torch.Generator(device=torch_device).manual_seed(0)
pipe.enable_free_init(
num_iters=2,
use_fast_sampling=True,
method="butterworth",
order=4,
spatial_stop_frequency=0.25,
temporal_stop_frequency=0.25,
generator=free_init_generator,
)
inputs_enable_free_init = self.get_dummy_inputs(torch_device)
frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]
pipe.disable_free_init()
inputs_disable_free_init = self.get_dummy_inputs(torch_device)
frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]
sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
self.assertGreater(
sum_enabled, 1e2, "Enabling of FreeInit should lead to results different from the default pipeline results"
)
self.assertLess(
max_diff_disabled,
1e-4,
"Disabling of FreeInit should lead to results similar to the default pipeline results",
)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment