Unverified Commit a517f665 authored by Aryan V S's avatar Aryan V S Committed by GitHub
Browse files

AnimateDiff Video to Video (#6328)



* begin animatediff img2video and video2video

* revert animatediff to original implementation

* add img2video as pipeline

* update

* add vid2vid pipeline

* update imports

* update

* remove copied from line for check_inputs

* update

* update examples

* add multi-batch support

* fix __init__.py files

* move img2vid to community

* update community readme and examples

* fix

* make fix-copies

* add vid2vid batch params

* apply suggestions from review
Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>

* add test for animatediff vid2vid

* torch.stack -> torch.cat
Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>

* make style

* docs for vid2vid

* update

* fix prepare_latents

* fix docs

* remove img2vid

* update README to :main

* remove slow test

* refactor pipeline output

* update docs

* update docs

* merge community readme from :main

* final fix i promise

* add support for url in animatediff example

* update example

* update callbacks to latest implementation

* Update src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* fix merge

* Apply suggestions from code review

* remove callback and callback_steps as suggested in review

* Update tests/pipelines/animatediff/test_animatediff_video2video.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* fix import error caused due to unet refactor in #6630

* fix numpy import error after tensor2vid refactor in #6626

* make fix-copies

* fix numpy error

* fix progress bar test

---------
Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 16748d1e
......@@ -25,6 +25,7 @@ The abstract of the paper is the following:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
| [AnimateDiffVideoToVideoPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py) | *Video-to-Video Generation with AnimateDiff* |
## Available checkpoints
......@@ -32,6 +33,8 @@ Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/gu
## Usage example
### AnimateDiffPipeline
AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
The following example demonstrates how to use a *MotionAdapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
......@@ -98,6 +101,114 @@ AnimateDiff tends to work better with finetuned Stable Diffusion models. If you
</Tip>
### AnimateDiffVideoToVideoPipeline
AnimateDiff can also be used to generate visually similar videos or enable style/character/background or other edits starting from an initial video, allowing you to seamlessly explore creative possibilities.
```python
import imageio
import requests
import torch
from diffusers import AnimateDiffVideoToVideoPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from io import BytesIO
from PIL import Image
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
# helper function to load videos
def load_video(file_path: str):
images = []
if file_path.startswith(('http://', 'https://')):
# If the file_path is a URL
response = requests.get(file_path)
response.raise_for_status()
content = BytesIO(response.content)
vid = imageio.get_reader(content)
else:
# Assuming it's a local file path
vid = imageio.get_reader(file_path)
for frame in vid:
pil_image = Image.fromarray(frame)
images.append(pil_image)
return images
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
output = pipe(
video = video,
prompt="panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
guidance_scale=7.5,
num_inference_steps=25,
strength=0.5,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
Here are some sample outputs:
<table>
<tr>
<th align=center>Source Video</th>
<th align=center>Output Video</th>
</tr>
<tr>
<td align=center>
raccoon playing a guitar
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
alt="racoon playing a guitar"
style="width: 300px;" />
</td>
<td align=center>
panda playing a guitar
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-output-1.gif"
alt="panda playing a guitar"
style="width: 300px;" />
</td>
</tr>
<tr>
<td align=center>
closeup of margot robbie, fireworks in the background, high quality
<br />
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-2.gif"
alt="closeup of margot robbie, fireworks in the background, high quality"
style="width: 300px;" />
</td>
<td align=center>
closeup of tony stark, robert downey jr, fireworks
<br/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-output-2.gif"
alt="closeup of tony stark, robert downey jr, fireworks"
style="width: 300px;" />
</td>
</tr>
</table>
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
......
......@@ -208,6 +208,7 @@ else:
"AmusedInpaintPipeline",
"AmusedPipeline",
"AnimateDiffPipeline",
"AnimateDiffVideoToVideoPipeline",
"AudioLDM2Pipeline",
"AudioLDM2ProjectionModel",
"AudioLDM2UNet2DConditionModel",
......@@ -569,6 +570,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AmusedInpaintPipeline,
AmusedPipeline,
AnimateDiffPipeline,
AnimateDiffVideoToVideoPipeline,
AudioLDM2Pipeline,
AudioLDM2ProjectionModel,
AudioLDM2UNet2DConditionModel,
......
......@@ -109,7 +109,10 @@ else:
]
)
_import_structure["amused"] = ["AmusedImg2ImgPipeline", "AmusedInpaintPipeline", "AmusedPipeline"]
_import_structure["animatediff"] = ["AnimateDiffPipeline"]
_import_structure["animatediff"] = [
"AnimateDiffPipeline",
"AnimateDiffVideoToVideoPipeline",
]
_import_structure["audioldm"] = ["AudioLDMPipeline"]
_import_structure["audioldm2"] = [
"AudioLDM2Pipeline",
......@@ -341,7 +344,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ..utils.dummy_torch_and_transformers_objects import *
else:
from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline
from .animatediff import AnimateDiffPipeline
from .animatediff import AnimateDiffPipeline, AnimateDiffVideoToVideoPipeline
from .audioldm import AudioLDMPipeline
from .audioldm2 import (
AudioLDM2Pipeline,
......
......@@ -11,7 +11,7 @@ from ...utils import (
_dummy_objects = {}
_import_structure = {}
_import_structure = {"pipeline_output": ["AnimateDiffPipelineOutput"]}
try:
if not (is_transformers_available() and is_torch_available()):
......@@ -21,7 +21,8 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline", "AnimateDiffPipelineOutput"]
_import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"]
_import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
......@@ -31,7 +32,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_animatediff import AnimateDiffPipeline, AnimateDiffPipelineOutput
from .pipeline_animatediff import AnimateDiffPipeline
from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline
from .pipeline_output import AnimateDiffPipelineOutput
else:
import sys
......
......@@ -14,7 +14,6 @@
import inspect
import math
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
......@@ -37,7 +36,6 @@ from ...schedulers import (
)
from ...utils import (
USE_PEFT_BACKEND,
BaseOutput,
deprecate,
logging,
replace_example_docstring,
......@@ -46,6 +44,7 @@ from ...utils import (
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import AnimateDiffPipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......@@ -153,11 +152,6 @@ def _freq_mix_3d(x: torch.Tensor, noise: torch.Tensor, LPF: torch.Tensor) -> tor
return x_mixed
@dataclass
class AnimateDiffPipelineOutput(BaseOutput):
frames: Union[torch.Tensor, np.ndarray]
class AnimateDiffPipeline(DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin):
r"""
Pipeline for text-to-video generation.
......
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import PIL.Image
import torch
from ...utils import BaseOutput
@dataclass
class AnimateDiffPipelineOutput(BaseOutput):
r"""
Output class for AnimateDiff pipelines.
Args:
frames (`List[List[PIL.Image.Image]]` or `torch.Tensor` or `np.ndarray`):
List of PIL Images of length `batch_size` or torch.Tensor or np.ndarray of shape
`(batch_size, num_frames, height, width, num_channels)`.
"""
frames: Union[List[List[PIL.Image.Image]], torch.Tensor, np.ndarray]
......@@ -92,6 +92,21 @@ class AnimateDiffPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class AnimateDiffVideoToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AudioLDM2Pipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
......
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AnimateDiffVideoToVideoPipeline,
AutoencoderKL,
DDIMScheduler,
MotionAdapter,
UNet2DConditionModel,
UNetMotionModel,
)
from diffusers.utils import is_xformers_available, logging
from diffusers.utils.testing_utils import torch_device
from ..pipeline_params import TEXT_TO_IMAGE_PARAMS, VIDEO_TO_VIDEO_BATCH_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
class AnimateDiffVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AnimateDiffVideoToVideoPipeline
params = TEXT_TO_IMAGE_PARAMS
batch_params = VIDEO_TO_VIDEO_BATCH_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
norm_num_groups=2,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
clip_sample=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
motion_adapter = MotionAdapter(
block_out_channels=(32, 64),
motion_layers_per_block=2,
motion_norm_num_groups=2,
motion_num_attention_heads=4,
)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"motion_adapter": motion_adapter,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"feature_extractor": None,
"image_encoder": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
video_height = 32
video_width = 32
video_num_frames = 2
video = [Image.new("RGB", (video_width, video_height))] * video_num_frames
inputs = {
"video": video,
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.5,
"output_type": "pt",
}
return inputs
def test_motion_unet_loading(self):
components = self.get_dummy_components()
pipe = AnimateDiffVideoToVideoPipeline(**components)
assert isinstance(pipe.unet, UNetMotionModel)
@unittest.skip("Attention slicing is not enabled in this pipeline")
def test_attention_slicing_forward_pass(self):
pass
def test_inference_batch_single_identical(
self,
batch_size=2,
expected_max_diff=1e-4,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for components in pipe.components.values():
if hasattr(components, "set_default_attn_processor"):
components.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batched_inputs.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
batched_inputs[name][-1] = 100 * "very long"
else:
batched_inputs[name] = batch_size * [value]
if "generator" in inputs:
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output = pipe(**inputs)
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
assert max_diff < expected_max_diff
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
def test_to_device(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
# pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cpu" for device in model_devices))
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
self.assertTrue(np.isnan(output_cpu).sum() == 0)
pipe.to("cuda")
model_devices = [
component.device.type for component in pipe.components.values() if hasattr(component, "device")
]
self.assertTrue(all(device == "cuda" for device in model_devices))
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
# pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
pipe.to(torch_dtype=torch.float16)
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
def test_prompt_embeds(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
inputs.pop("prompt")
inputs["prompt_embeds"] = torch.randn((1, 4, 32), device=torch_device)
pipe(**inputs)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_without_offload = pipe(**inputs).frames[0]
output_without_offload = (
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
)
pipe.enable_xformers_memory_efficient_attention()
inputs = self.get_dummy_inputs(torch_device)
output_with_offload = pipe(**inputs).frames[0]
output_with_offload = (
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
)
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")
......@@ -125,3 +125,5 @@ TOKENS_TO_AUDIO_GENERATION_PARAMS = frozenset(["input_tokens"])
TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS = frozenset(["input_tokens"])
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS = frozenset(["prompt_embeds"])
VIDEO_TO_VIDEO_BATCH_PARAMS = frozenset(["prompt", "negative_prompt", "video"])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment