test_lora_layers.py 62.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
15
import copy
16
17
import os
import tempfile
Patrick von Platen's avatar
Patrick von Platen committed
18
import time
19
20
import unittest

Will Berman's avatar
Will Berman committed
21
import numpy as np
22
23
import torch
import torch.nn as nn
24
import torch.nn.functional as F
Will Berman's avatar
Will Berman committed
25
from huggingface_hub.repocard import RepoCard
26
27
28
29
30
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
31
    DiffusionPipeline,
32
33
34
35
36
    EulerDiscreteScheduler,
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
Will Berman's avatar
Will Berman committed
37
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules
38
39
40
41
42
from diffusers.models.attention_processor import (
    Attention,
    AttnProcessor,
    AttnProcessor2_0,
    LoRAAttnProcessor,
43
    LoRAAttnProcessor2_0,
44
45
    XFormersAttnProcessor,
)
Will Berman's avatar
Will Berman committed
46
47
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import require_torch_gpu, slow
48
49
50
51
52
53
54
55
56
57
58
59
60
61


def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
62
63
64
65
66
67
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
68
69
70
71
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


72
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module):
73
    text_lora_attn_procs = {}
74
75
76
    lora_attn_processor_class = (
        LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
    )
Will Berman's avatar
Will Berman committed
77
78
79
80
81
82
83
84
85
    for name, module in text_encoder_attn_modules(text_encoder):
        if isinstance(module.out_proj, nn.Linear):
            out_features = module.out_proj.out_features
        elif isinstance(module.out_proj, PatchedLoraProjection):
            out_features = module.out_proj.regular_linear_layer.out_features
        else:
            assert False, module.out_proj.__class__

        text_lora_attn_procs[name] = lora_attn_processor_class(hidden_size=out_features, cross_attention_dim=None)
86
87
88
89
90
    return text_lora_attn_procs


def create_text_encoder_lora_layers(text_encoder: nn.Module):
    text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder)
91
92
93
94
    text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
    return text_encoder_lora_layers


95
def set_lora_weights(lora_attn_parameters, randn_weight=False, var=1.0):
Will Berman's avatar
Will Berman committed
96
    with torch.no_grad():
97
        for parameter in lora_attn_parameters:
Will Berman's avatar
Will Berman committed
98
            if randn_weight:
99
                parameter[:] = torch.randn_like(parameter) * var
Will Berman's avatar
Will Berman committed
100
101
            else:
                torch.zero_(parameter)
102
103


Patrick von Platen's avatar
Patrick von Platen committed
104
105
106
107
108
109
110
111
112
113
114
115
def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().sum() > 1e-3:
            models_are_equal = False

    return models_are_equal


116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
class LoraLoaderMixinTests(unittest.TestCase):
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
135
            steps_offset=1,
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
        text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)

        pipeline_components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "text_encoder_lora_layers": text_encoder_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components

179
    def get_dummy_inputs(self, with_generator=True):
180
181
182
183
184
185
186
187
188
189
190
191
192
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
193
            "output_type": "np",
194
        }
195
196
        if with_generator:
            pipeline_inputs.update({"generator": generator})
197
198
199

        return noise, input_ids, pipeline_inputs

200
    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
201
202
203
204
205
206
207
208
209
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

210
211
212
213
214
215
216
    def create_lora_weight_file(self, tmpdirname):
        _, lora_components = self.get_dummy_components()
        LoraLoaderMixin.save_lora_weights(
            save_directory=tmpdirname,
            unet_lora_layers=lora_components["unet_lora_layers"],
            text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
        )
217
        self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
218

219
220
221
222
223
224
    def test_lora_save_load(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

225
        _, _, pipeline_inputs = self.get_dummy_inputs()
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

245
    def test_lora_save_load_no_safe_serialization(self):
246
247
248
249
250
251
        pipeline_components, lora_components = self.get_dummy_components()
        unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

252
        _, _, pipeline_inputs = self.get_dummy_inputs()
253
254
255
256
257
258
259

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            unet = sd_pipe.unet
            unet.set_attn_processor(unet_lora_attn_procs)
260
            unet.save_attn_procs(tmpdirname, safe_serialization=False)
261
262
263
264
265
266
267
268
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
269

270
271
272
273
274
275
276
277
278
279
280
    def test_text_encoder_lora_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # monkey patch
Will Berman's avatar
Will Berman committed
281
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
282

Will Berman's avatar
Will Berman committed
283
        set_lora_weights(params, randn_weight=False)
284
285
286
287
288
289
290
291
292
293

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs"

        # create lora_attn_procs with randn up.weights
Will Berman's avatar
Will Berman committed
294
        create_text_encoder_lora_attn_procs(pipe.text_encoder)
295
296

        # monkey patch
Will Berman's avatar
Will Berman committed
297
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
298

Will Berman's avatar
Will Berman committed
299
        set_lora_weights(params, randn_weight=True)
300
301
302
303
304
305
306
307
308

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs"

309
310
311
312
313
314
315
316
317
318
319
    def test_text_encoder_lora_remove_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # monkey patch
Will Berman's avatar
Will Berman committed
320
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
321

Will Berman's avatar
Will Berman committed
322
        set_lora_weights(params, randn_weight=True)
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora outputs should be different to without lora outputs"

        # remove monkey patch
        pipe._remove_text_encoder_monkey_patch()

        # inference with removed lora
        outputs_without_lora_removed = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora_removed.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_without_lora_removed
        ), "remove lora monkey patch should restore the original outputs"
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
    def test_text_encoder_lora_scale(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs()

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
357
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
358
359
360
361
362
363
364
365
366
367
368
369
370
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        lora_images_with_scale = sd_pipe(**pipeline_inputs, cross_attention_kwargs={"scale": 0.5}).images
        lora_image_with_scale_slice = lora_images_with_scale[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(
            torch.allclose(torch.from_numpy(lora_image_slice), torch.from_numpy(lora_image_with_scale_slice))
        )

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    def test_lora_unet_attn_processors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # check if vanilla attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0))

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
391
392
393
394
                    self.assertIsNotNone(module.to_q.lora_layer)
                    self.assertIsNotNone(module.to_k.lora_layer)
                    self.assertIsNotNone(module.to_v.lora_layer)
                    self.assertIsNotNone(module.to_out[0].lora_layer)
395

396
    def test_unload_lora_sd(self):
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        pipeline_components, lora_components = self.get_dummy_components()
        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
        sd_pipe = StableDiffusionPipeline(**pipeline_components)

        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
414
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Unload LoRA parameters.
        sd_pipe.unload_lora_weights()
        original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice_two = original_images_two[0, -3:, -3:, -1]

        assert not np.allclose(
            orig_image_slice, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert not np.allclose(
            orig_image_slice_two, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert np.allclose(
            orig_image_slice, orig_image_slice_two, atol=1e-3
        ), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters."

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_unet_attn_processors_with_xformers(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # enable XFormers
            sd_pipe.enable_xformers_memory_efficient_attention()

            # check if xFormers attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, XFormersAttnProcessor)

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
459
460
461
462
                    self.assertIsNotNone(module.to_q.lora_layer)
                    self.assertIsNotNone(module.to_k.lora_layer)
                    self.assertIsNotNone(module.to_v.lora_layer)
                    self.assertIsNotNone(module.to_out[0].lora_layer)
463

464
465
466
467
468
469
470
471
            # unload lora weights
            sd_pipe.unload_lora_weights()

            # check if attention processors are reverted back to xFormers
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, XFormersAttnProcessor)

472
473
474
475
476
477
478
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_save_load_with_xformers(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

479
        _, _, pipeline_inputs = self.get_dummy_inputs()
480
481
482
483
484
485
486
487
488
489
490
491
492

        # enable XFormers
        sd_pipe.enable_xformers_memory_efficient_attention()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
493
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
494
495
496
497
498
499
500
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
Will Berman's avatar
Will Berman committed
501
502


503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
class SDXLLoraLoaderMixinTests(unittest.TestCase):
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
556
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
557
558

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
559
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
        text_encoder_one_lora_layers = create_text_encoder_lora_layers(text_encoder)
        text_encoder_two_lora_layers = create_text_encoder_lora_layers(text_encoder_2)

        pipeline_components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
        }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "text_encoder_one_lora_layers": text_encoder_one_lora_layers,
            "text_encoder_two_lora_layers": text_encoder_two_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    def test_lora_save_load(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
            )
621
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

    def test_unload_lora_sdxl(self):
        pipeline_components, lora_components = self.get_dummy_components()
        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)

        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
            )
650
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Unload LoRA parameters.
        sd_pipe.unload_lora_weights()
        original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice_two = original_images_two[0, -3:, -3:, -1]

        assert not np.allclose(
            orig_image_slice, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert not np.allclose(
            orig_image_slice_two, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert np.allclose(
            orig_image_slice, orig_image_slice_two, atol=1e-3
        ), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters."

671
672
673
674
675
676
677
678
679
680
681
682
    def test_load_lora_locally(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
Sayak Paul's avatar
Sayak Paul committed
683
                safe_serialization=False,
684
685
686
687
688
689
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

        sd_pipe.unload_lora_weights()

Patrick von Platen's avatar
Patrick von Platen committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    def test_text_encoder_lora_state_dict_unchanged(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)

        text_encoder_1_sd_keys = sorted(sd_pipe.text_encoder.state_dict().keys())
        text_encoder_2_sd_keys = sorted(sd_pipe.text_encoder_2.state_dict().keys())

        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=False,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            text_encoder_1_sd_keys_2 = sorted(sd_pipe.text_encoder.state_dict().keys())
            text_encoder_2_sd_keys_2 = sorted(sd_pipe.text_encoder_2.state_dict().keys())

        sd_pipe.unload_lora_weights()

        text_encoder_1_sd_keys_3 = sorted(sd_pipe.text_encoder.state_dict().keys())
        text_encoder_2_sd_keys_3 = sorted(sd_pipe.text_encoder_2.state_dict().keys())

        # default & unloaded LoRA weights should have identical state_dicts
        assert text_encoder_1_sd_keys == text_encoder_1_sd_keys_3
        # default & loaded LoRA weights should NOT have identical state_dicts
722
        assert text_encoder_1_sd_keys != text_encoder_1_sd_keys_2
Patrick von Platen's avatar
Patrick von Platen committed
723
724
725
726
727
728

        # default & unloaded LoRA weights should have identical state_dicts
        assert text_encoder_2_sd_keys == text_encoder_2_sd_keys_3
        # default & loaded LoRA weights should NOT have identical state_dicts
        assert text_encoder_2_sd_keys != text_encoder_2_sd_keys_2

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    def test_load_lora_locally_safetensors(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.unload_lora_weights()

Patrick von Platen's avatar
Patrick von Platen committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    def test_lora_fusion(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)

        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.fuse_lora()
        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        self.assertFalse(np.allclose(orig_image_slice, lora_image_slice, atol=1e-3))

    def test_unfuse_lora(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)

        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.fuse_lora()
        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Reverse LoRA fusion.
        sd_pipe.unfuse_lora()
        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice_two = original_images[0, -3:, -3:, -1]

        assert not np.allclose(
            orig_image_slice, lora_image_slice
        ), "Fusion of LoRAs should lead to a different image slice."
        assert not np.allclose(
            orig_image_slice_two, lora_image_slice
        ), "Fusion of LoRAs should lead to a different image slice."
        assert np.allclose(
            orig_image_slice, orig_image_slice_two, atol=1e-3
        ), "Reversing LoRA fusion should lead to results similar to what was obtained with the pipeline without any LoRA parameters."

    def test_lora_fusion_is_not_affected_by_unloading(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)

        _ = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.fuse_lora()
        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Unload LoRA parameters.
        sd_pipe.unload_lora_weights()
        images_with_unloaded_lora = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        images_with_unloaded_lora_slice = images_with_unloaded_lora[0, -3:, -3:, -1]

        assert np.allclose(
            lora_image_slice, images_with_unloaded_lora_slice
        ), "`unload_lora_weights()` should have not effect on the semantics of the results as the LoRA parameters were fused."

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    def test_fuse_lora_with_different_scales(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)

        _ = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.fuse_lora(lora_scale=1.0)
        lora_images_scale_one = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice_scale_one = lora_images_scale_one[0, -3:, -3:, -1]

        # Reverse LoRA fusion.
        sd_pipe.unfuse_lora()

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.fuse_lora(lora_scale=0.5)
        lora_images_scale_0_5 = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice_scale_0_5 = lora_images_scale_0_5[0, -3:, -3:, -1]

        assert not np.allclose(
            lora_image_slice_scale_one, lora_image_slice_scale_0_5, atol=1e-03
        ), "Different LoRA scales should influence the outputs accordingly."

    def test_with_different_scales(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        original_imagee_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        lora_images_scale_one = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice_scale_one = lora_images_scale_one[0, -3:, -3:, -1]

        lora_images_scale_0_5 = sd_pipe(
            **pipeline_inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
        ).images
        lora_image_slice_scale_0_5 = lora_images_scale_0_5[0, -3:, -3:, -1]

        lora_images_scale_0_0 = sd_pipe(
            **pipeline_inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
        ).images
        lora_image_slice_scale_0_0 = lora_images_scale_0_0[0, -3:, -3:, -1]

        assert not np.allclose(
            lora_image_slice_scale_one, lora_image_slice_scale_0_5, atol=1e-03
        ), "Different LoRA scales should influence the outputs accordingly."

        assert np.allclose(
            original_imagee_slice, lora_image_slice_scale_0_0, atol=1e-03
        ), "LoRA scale of 0.0 shouldn't be different from the results without LoRA."

    def test_with_different_scales_fusion_equivalence(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        # sd_pipe.unet.set_default_attn_processor()
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)

        images = sd_pipe(
            **pipeline_inputs,
            generator=torch.manual_seed(0),
        ).images
        images_slice = images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True, var=0.1)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True, var=0.1)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True, var=0.1)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        lora_images_scale_0_5 = sd_pipe(
            **pipeline_inputs,
            generator=torch.manual_seed(0),
            cross_attention_kwargs={"scale": 0.5},
        ).images
        lora_image_slice_scale_0_5 = lora_images_scale_0_5[0, -3:, -3:, -1]

        sd_pipe.fuse_lora(lora_scale=0.5)
        lora_images_scale_0_5_fusion = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice_scale_0_5_fusion = lora_images_scale_0_5_fusion[0, -3:, -3:, -1]

        assert np.allclose(
            lora_image_slice_scale_0_5, lora_image_slice_scale_0_5_fusion, atol=1e-03
        ), "Fusion shouldn't affect the results when calling the pipeline with a non-default LoRA scale."

        sd_pipe.unfuse_lora()
        images_unfused = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        images_slice_unfused = images_unfused[0, -3:, -3:, -1]

        assert np.allclose(images_slice, images_slice_unfused, atol=1e-03), "Unfused should match no LoRA"

        assert not np.allclose(
            images_slice, lora_image_slice_scale_0_5, atol=1e-03
        ), "0.5 scale and no scale shouldn't match"

1021

Will Berman's avatar
Will Berman committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
@slow
@require_torch_gpu
class LoraIntegrationTests(unittest.TestCase):
    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
1080
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
Will Berman's avatar
Will Berman committed
1081

1082
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
Will Berman's avatar
Will Berman committed
1083

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    def test_kohya_sd_v15_with_higher_dimensions(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/urushisato-lora"
        lora_filename = "urushisato_v15.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])

1101
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
1102

Will Berman's avatar
Will Berman committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
1121

1122
    def test_unload_kohya_lora(self):
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
1139
        generator = torch.manual_seed(0)
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

    def test_load_unload_load_kohya_lora(self):
        # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
        # without introducing any side-effects. Even though the test uses a Kohya-style
        # LoRA, the underlying adapter handling mechanism is format-agnostic.
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))

        # make sure we can load a LoRA again after unloading and they don't have
        # any undesired effects.
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images_again = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
1201
1202
1203
1204
1205
1206
1207
1208

    def test_sdxl_0_9_lora_one(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
        lora_filename = "daiton-xl-lora-test.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
Patrick von Platen's avatar
Patrick von Platen committed
1209
        pipe.enable_model_cpu_offload()
1210
1211
1212
1213
1214
1215
1216
1217

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])

1218
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
1219
1220
1221
1222
1223
1224
1225
1226

    def test_sdxl_0_9_lora_two(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
        lora_filename = "saijo.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
Patrick von Platen's avatar
Patrick von Platen committed
1227
        pipe.enable_model_cpu_offload()
1228
1229
1230
1231
1232
1233
1234
1235

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])

1236
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
1237
1238
1239
1240
1241
1242
1243
1244

    def test_sdxl_0_9_lora_three(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
        lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
Patrick von Platen's avatar
Patrick von Platen committed
1245
        pipe.enable_model_cpu_offload()
1246
1247
1248
1249
1250
1251

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
1252
        expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])
1253

1254
        self.assertTrue(np.allclose(images, expected, atol=5e-3))
1255
1256
1257
1258
1259

    def test_sdxl_1_0_lora(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
Patrick von Platen's avatar
Patrick von Platen committed
1260
1261
1262
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
1263
        pipe.enable_model_cpu_offload()
Patrick von Platen's avatar
Patrick von Platen committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_sdxl_1_0_lora_fusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
1278
1279
1280
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
Patrick von Platen's avatar
Patrick von Platen committed
1281
1282
        pipe.fuse_lora()
        pipe.enable_model_cpu_offload()
1283
1284
1285
1286
1287
1288

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
Patrick von Platen's avatar
Patrick von Platen committed
1289
        # This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
1290
1291
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

Patrick von Platen's avatar
Patrick von Platen committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_sdxl_1_0_lora_unfusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_with_fusion = images[0, -3:, -3:, -1].flatten()

        pipe.unfuse_lora()
        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion = images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(images_with_fusion, images_without_fusion, atol=1e-3))

    def test_sdxl_1_0_lora_unfusion_effectivity(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        original_image_slice = images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        _ = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        pipe.unfuse_lora()
        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3))

    def test_sdxl_1_0_lora_fusion_efficiency(self):
        generator = torch.Generator().manual_seed(0)
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        start_time = time.time()
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_non_fusion = end_time - start_time

        del pipe

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()
        pipe.enable_model_cpu_offload()

        start_time = time.time()
        generator = torch.Generator().manual_seed(0)
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_fusion = end_time - start_time

        self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

    def test_sdxl_1_0_last_ben(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "TheLastBen/Papercut_SDXL"
        lora_filename = "papercut.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
Patrick von Platen's avatar
Patrick von Platen committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

    def test_sdxl_1_0_fuse_unfuse_all(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        unet_sd = copy.deepcopy(pipe.unet.state_dict())

        pipe.load_lora_weights("davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors")
        pipe.fuse_lora()
        pipe.unload_lora_weights()
        pipe.unfuse_lora()

        new_text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        new_text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        new_unet_sd = copy.deepcopy(pipe.unet.state_dict())

        assert state_dicts_almost_equal(text_encoder_1_sd, new_text_encoder_1_sd)
        assert state_dicts_almost_equal(text_encoder_2_sd, new_text_encoder_2_sd)
        assert state_dicts_almost_equal(unet_sd, new_unet_sd)