"vscode:/vscode.git/clone" did not exist on "96a5e4dd795b675210b0d18f5e9fab69ec69bb6e"
test_lora_layers.py 21.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
21
import torch
import torch.nn as nn
22
import torch.nn.functional as F
Will Berman's avatar
Will Berman committed
23
from huggingface_hub.repocard import RepoCard
24
25
26
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
Will Berman's avatar
Will Berman committed
27
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules
28
29
30
31
32
from diffusers.models.attention_processor import (
    Attention,
    AttnProcessor,
    AttnProcessor2_0,
    LoRAAttnProcessor,
33
    LoRAAttnProcessor2_0,
34
35
36
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
Will Berman's avatar
Will Berman committed
37
38
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import require_torch_gpu, slow
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
53
54
55
56
57
58
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
59
60
61
62
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


63
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module):
64
    text_lora_attn_procs = {}
65
66
67
    lora_attn_processor_class = (
        LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
    )
Will Berman's avatar
Will Berman committed
68
69
70
71
72
73
74
75
76
    for name, module in text_encoder_attn_modules(text_encoder):
        if isinstance(module.out_proj, nn.Linear):
            out_features = module.out_proj.out_features
        elif isinstance(module.out_proj, PatchedLoraProjection):
            out_features = module.out_proj.regular_linear_layer.out_features
        else:
            assert False, module.out_proj.__class__

        text_lora_attn_procs[name] = lora_attn_processor_class(hidden_size=out_features, cross_attention_dim=None)
77
78
79
80
81
    return text_lora_attn_procs


def create_text_encoder_lora_layers(text_encoder: nn.Module):
    text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder)
82
83
84
85
    text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
    return text_encoder_lora_layers


Will Berman's avatar
Will Berman committed
86
87
88
89
90
91
92
def set_lora_weights(text_lora_attn_parameters, randn_weight=False):
    with torch.no_grad():
        for parameter in text_lora_attn_parameters:
            if randn_weight:
                parameter[:] = torch.randn_like(parameter)
            else:
                torch.zero_(parameter)
93
94


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class LoraLoaderMixinTests(unittest.TestCase):
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
114
            steps_offset=1,
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
        text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)

        pipeline_components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "text_encoder_lora_layers": text_encoder_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components

    def get_dummy_inputs(self):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }

        return noise, input_ids, pipeline_inputs

178
179
180
181
182
183
184
185
186
187
188
        # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb

    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

189
190
191
192
193
194
195
196
197
    def create_lora_weight_file(self, tmpdirname):
        _, lora_components = self.get_dummy_components()
        LoraLoaderMixin.save_lora_weights(
            save_directory=tmpdirname,
            unet_lora_layers=lora_components["unet_lora_layers"],
            text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
        )
        self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))

198
199
200
201
202
203
    def test_lora_save_load(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

204
        _, _, pipeline_inputs = self.get_dummy_inputs()
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

    def test_lora_save_load_safetensors(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

230
        _, _, pipeline_inputs = self.get_dummy_inputs()
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

    def test_lora_save_load_legacy(self):
        pipeline_components, lora_components = self.get_dummy_components()
        unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

258
        _, _, pipeline_inputs = self.get_dummy_inputs()
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            unet = sd_pipe.unet
            unet.set_attn_processor(unet_lora_attn_procs)
            unet.save_attn_procs(tmpdirname)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
275

276
277
278
279
280
281
282
283
284
285
286
    def test_text_encoder_lora_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # monkey patch
Will Berman's avatar
Will Berman committed
287
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
288

Will Berman's avatar
Will Berman committed
289
        set_lora_weights(params, randn_weight=False)
290
291
292
293
294
295
296
297
298
299

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs"

        # create lora_attn_procs with randn up.weights
Will Berman's avatar
Will Berman committed
300
        create_text_encoder_lora_attn_procs(pipe.text_encoder)
301
302

        # monkey patch
Will Berman's avatar
Will Berman committed
303
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
304

Will Berman's avatar
Will Berman committed
305
        set_lora_weights(params, randn_weight=True)
306
307
308
309
310
311
312
313
314

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs"

315
316
317
318
319
320
321
322
323
324
325
    def test_text_encoder_lora_remove_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # monkey patch
Will Berman's avatar
Will Berman committed
326
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
327

Will Berman's avatar
Will Berman committed
328
        set_lora_weights(params, randn_weight=True)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora outputs should be different to without lora outputs"

        # remove monkey patch
        pipe._remove_text_encoder_monkey_patch()

        # inference with removed lora
        outputs_without_lora_removed = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora_removed.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_without_lora_removed
        ), "remove lora monkey patch should restore the original outputs"
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    def test_text_encoder_lora_scale(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs()

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        lora_images_with_scale = sd_pipe(**pipeline_inputs, cross_attention_kwargs={"scale": 0.5}).images
        lora_image_with_scale_slice = lora_images_with_scale[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(
            torch.allclose(torch.from_numpy(lora_image_slice), torch.from_numpy(lora_image_with_scale_slice))
        )

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    def test_lora_unet_attn_processors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # check if vanilla attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0))

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
397
398
399
400
                    attn_proc_class = (
                        LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                    )
                    self.assertIsInstance(module.processor, attn_proc_class)
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_unet_attn_processors_with_xformers(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # enable XFormers
            sd_pipe.enable_xformers_memory_efficient_attention()

            # check if xFormers attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, XFormersAttnProcessor)

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, LoRAXFormersAttnProcessor)

    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_save_load_with_xformers(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

435
        _, _, pipeline_inputs = self.get_dummy_inputs()
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

        # enable XFormers
        sd_pipe.enable_xformers_memory_efficient_attention()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
Will Berman's avatar
Will Berman committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539


@slow
@require_torch_gpu
class LoraIntegrationTests(unittest.TestCase):
    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.3743, 0.3893, 0.3835, 0.3891, 0.3949, 0.3649, 0.3858, 0.3802, 0.3245])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))