test_lora_layers.py 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import gc
16
17
18
19
20
21
22
23
24
25
import os
import tempfile
import unittest

import torch
import torch.nn as nn
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
26
27
28
29
30
31
32
33
from diffusers.models.attention_processor import (
    Attention,
    AttnProcessor,
    AttnProcessor2_0,
    LoRAAttnProcessor,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
34
from diffusers.utils import TEXT_ENCODER_ATTN_MODULE, floats_tensor, torch_device
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


54
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module):
55
56
    text_lora_attn_procs = {}
    for name, module in text_encoder.named_modules():
57
58
59
60
61
62
63
64
65
        if name.endswith(TEXT_ENCODER_ATTN_MODULE):
            text_lora_attn_procs[name] = LoRAAttnProcessor(
                hidden_size=module.out_proj.out_features, cross_attention_dim=None
            )
    return text_lora_attn_procs


def create_text_encoder_lora_layers(text_encoder: nn.Module):
    text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder)
66
67
68
69
    text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
    return text_encoder_lora_layers


70
71
72
73
74
75
76
77
78
79
80
81
82
def set_lora_up_weights(text_lora_attn_procs, randn_weight=False):
    for _, attn_proc in text_lora_attn_procs.items():
        # set up.weights
        for layer_name, layer_module in attn_proc.named_modules():
            if layer_name.endswith("_lora"):
                weight = (
                    torch.randn_like(layer_module.up.weight)
                    if randn_weight
                    else torch.zeros_like(layer_module.up.weight)
                )
                layer_module.up.weight = torch.nn.Parameter(weight)


83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
class LoraLoaderMixinTests(unittest.TestCase):
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
102
            steps_offset=1,
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
        text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)

        pipeline_components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "text_encoder_lora_layers": text_encoder_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components

    def get_dummy_inputs(self):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }

        return noise, input_ids, pipeline_inputs

    def test_lora_save_load(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

    def test_lora_save_load_safetensors(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

    def test_lora_save_load_legacy(self):
        pipeline_components, lora_components = self.get_dummy_components()
        unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            unet = sd_pipe.unet
            unet.set_attn_processor(unet_lora_attn_procs)
            unet.save_attn_procs(tmpdirname)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def test_text_encoder_lora_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # create lora_attn_procs with zeroed out up.weights
        text_attn_procs = create_text_encoder_lora_attn_procs(pipe.text_encoder)
        set_lora_up_weights(text_attn_procs, randn_weight=False)

        # monkey patch
        pipe._modify_text_encoder(text_attn_procs)

        # verify that it's okay to release the text_attn_procs which holds the LoRAAttnProcessor.
        del text_attn_procs
        gc.collect()

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs"

        # create lora_attn_procs with randn up.weights
        text_attn_procs = create_text_encoder_lora_attn_procs(pipe.text_encoder)
        set_lora_up_weights(text_attn_procs, randn_weight=True)

        # monkey patch
        pipe._modify_text_encoder(text_attn_procs)

        # verify that it's okay to release the text_attn_procs which holds the LoRAAttnProcessor.
        del text_attn_procs
        gc.collect()

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs"

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def create_lora_weight_file(self, tmpdirname):
        _, lora_components = self.get_dummy_components()
        LoraLoaderMixin.save_lora_weights(
            save_directory=tmpdirname,
            unet_lora_layers=lora_components["unet_lora_layers"],
            text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
        )
        self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))

    def test_lora_unet_attn_processors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # check if vanilla attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0))

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, LoRAAttnProcessor)

    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_unet_attn_processors_with_xformers(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # enable XFormers
            sd_pipe.enable_xformers_memory_efficient_attention()

            # check if xFormers attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, XFormersAttnProcessor)

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, LoRAXFormersAttnProcessor)

    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_save_load_with_xformers(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

        # enable XFormers
        sd_pipe.enable_xformers_memory_efficient_attention()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))