test_lora_layers.py 40.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
21
import torch
import torch.nn as nn
22
import torch.nn.functional as F
Will Berman's avatar
Will Berman committed
23
from huggingface_hub.repocard import RepoCard
24
25
26
27
28
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
29
    DiffusionPipeline,
30
31
32
33
34
    EulerDiscreteScheduler,
    StableDiffusionPipeline,
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
Will Berman's avatar
Will Berman committed
35
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin, PatchedLoraProjection, text_encoder_attn_modules
36
37
38
39
40
from diffusers.models.attention_processor import (
    Attention,
    AttnProcessor,
    AttnProcessor2_0,
    LoRAAttnProcessor,
41
    LoRAAttnProcessor2_0,
42
43
    XFormersAttnProcessor,
)
Will Berman's avatar
Will Berman committed
44
45
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import require_torch_gpu, slow
46
47
48
49
50
51
52
53
54
55
56
57
58
59


def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
60
61
62
63
64
65
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
66
67
68
69
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


70
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module):
71
    text_lora_attn_procs = {}
72
73
74
    lora_attn_processor_class = (
        LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
    )
Will Berman's avatar
Will Berman committed
75
76
77
78
79
80
81
82
83
    for name, module in text_encoder_attn_modules(text_encoder):
        if isinstance(module.out_proj, nn.Linear):
            out_features = module.out_proj.out_features
        elif isinstance(module.out_proj, PatchedLoraProjection):
            out_features = module.out_proj.regular_linear_layer.out_features
        else:
            assert False, module.out_proj.__class__

        text_lora_attn_procs[name] = lora_attn_processor_class(hidden_size=out_features, cross_attention_dim=None)
84
85
86
87
88
    return text_lora_attn_procs


def create_text_encoder_lora_layers(text_encoder: nn.Module):
    text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder)
89
90
91
92
    text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
    return text_encoder_lora_layers


93
def set_lora_weights(lora_attn_parameters, randn_weight=False):
Will Berman's avatar
Will Berman committed
94
    with torch.no_grad():
95
        for parameter in lora_attn_parameters:
Will Berman's avatar
Will Berman committed
96
97
98
99
            if randn_weight:
                parameter[:] = torch.randn_like(parameter)
            else:
                torch.zero_(parameter)
100
101


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class LoraLoaderMixinTests(unittest.TestCase):
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
121
            steps_offset=1,
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
        text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)

        pipeline_components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "text_encoder_lora_layers": text_encoder_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components

165
    def get_dummy_inputs(self, with_generator=True):
166
167
168
169
170
171
172
173
174
175
176
177
178
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
179
            "output_type": "np",
180
        }
181
182
        if with_generator:
            pipeline_inputs.update({"generator": generator})
183
184
185

        return noise, input_ids, pipeline_inputs

186
    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
187
188
189
190
191
192
193
194
195
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

196
197
198
199
200
201
202
    def create_lora_weight_file(self, tmpdirname):
        _, lora_components = self.get_dummy_components()
        LoraLoaderMixin.save_lora_weights(
            save_directory=tmpdirname,
            unet_lora_layers=lora_components["unet_lora_layers"],
            text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
        )
203
        self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
204

205
206
207
208
209
210
    def test_lora_save_load(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

211
        _, _, pipeline_inputs = self.get_dummy_inputs()
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

231
    def test_lora_save_load_no_safe_serialization(self):
232
233
234
235
236
237
        pipeline_components, lora_components = self.get_dummy_components()
        unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

238
        _, _, pipeline_inputs = self.get_dummy_inputs()
239
240
241
242
243
244
245

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            unet = sd_pipe.unet
            unet.set_attn_processor(unet_lora_attn_procs)
246
            unet.save_attn_procs(tmpdirname, safe_serialization=False)
247
248
249
250
251
252
253
254
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
255

256
257
258
259
260
261
262
263
264
265
266
    def test_text_encoder_lora_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # monkey patch
Will Berman's avatar
Will Berman committed
267
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
268

Will Berman's avatar
Will Berman committed
269
        set_lora_weights(params, randn_weight=False)
270
271
272
273
274
275
276
277
278
279

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs"

        # create lora_attn_procs with randn up.weights
Will Berman's avatar
Will Berman committed
280
        create_text_encoder_lora_attn_procs(pipe.text_encoder)
281
282

        # monkey patch
Will Berman's avatar
Will Berman committed
283
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
284

Will Berman's avatar
Will Berman committed
285
        set_lora_weights(params, randn_weight=True)
286
287
288
289
290
291
292
293
294

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs"

295
296
297
298
299
300
301
302
303
304
305
    def test_text_encoder_lora_remove_monkey_patch(self):
        pipeline_components, _ = self.get_dummy_components()
        pipe = StableDiffusionPipeline(**pipeline_components)

        dummy_tokens = self.get_dummy_tokens()

        # inference without lora
        outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora.shape == (1, 77, 32)

        # monkey patch
Will Berman's avatar
Will Berman committed
306
        params = pipe._modify_text_encoder(pipe.text_encoder, pipe.lora_scale)
307

Will Berman's avatar
Will Berman committed
308
        set_lora_weights(params, randn_weight=True)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

        # inference with lora
        outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_with_lora.shape == (1, 77, 32)

        assert not torch.allclose(
            outputs_without_lora, outputs_with_lora
        ), "lora outputs should be different to without lora outputs"

        # remove monkey patch
        pipe._remove_text_encoder_monkey_patch()

        # inference with removed lora
        outputs_without_lora_removed = pipe.text_encoder(**dummy_tokens)[0]
        assert outputs_without_lora_removed.shape == (1, 77, 32)

        assert torch.allclose(
            outputs_without_lora, outputs_without_lora_removed
        ), "remove lora monkey patch should restore the original outputs"
328

329
330
331
332
333
334
335
336
337
338
339
340
341
342
    def test_text_encoder_lora_scale(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs()

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
343
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
344
345
346
347
348
349
350
351
352
353
354
355
356
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        lora_images_with_scale = sd_pipe(**pipeline_inputs, cross_attention_kwargs={"scale": 0.5}).images
        lora_image_with_scale_slice = lora_images_with_scale[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(
            torch.allclose(torch.from_numpy(lora_image_slice), torch.from_numpy(lora_image_with_scale_slice))
        )

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    def test_lora_unet_attn_processors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # check if vanilla attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0))

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
377
378
379
380
                    self.assertIsNotNone(module.to_q.lora_layer)
                    self.assertIsNotNone(module.to_k.lora_layer)
                    self.assertIsNotNone(module.to_v.lora_layer)
                    self.assertIsNotNone(module.to_out[0].lora_layer)
381

382
    def test_unload_lora_sd(self):
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        pipeline_components, lora_components = self.get_dummy_components()
        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
        sd_pipe = StableDiffusionPipeline(**pipeline_components)

        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
400
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Unload LoRA parameters.
        sd_pipe.unload_lora_weights()
        original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice_two = original_images_two[0, -3:, -3:, -1]

        assert not np.allclose(
            orig_image_slice, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert not np.allclose(
            orig_image_slice_two, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert np.allclose(
            orig_image_slice, orig_image_slice_two, atol=1e-3
        ), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters."

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_unet_attn_processors_with_xformers(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            self.create_lora_weight_file(tmpdirname)

            pipeline_components, _ = self.get_dummy_components()
            sd_pipe = StableDiffusionPipeline(**pipeline_components)
            sd_pipe = sd_pipe.to(torch_device)
            sd_pipe.set_progress_bar_config(disable=None)

            # enable XFormers
            sd_pipe.enable_xformers_memory_efficient_attention()

            # check if xFormers attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, XFormersAttnProcessor)

            # load LoRA weight file
            sd_pipe.load_lora_weights(tmpdirname)

            # check if lora attention processors are used
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
445
446
447
448
                    self.assertIsNotNone(module.to_q.lora_layer)
                    self.assertIsNotNone(module.to_k.lora_layer)
                    self.assertIsNotNone(module.to_v.lora_layer)
                    self.assertIsNotNone(module.to_out[0].lora_layer)
449

450
451
452
453
454
455
456
457
            # unload lora weights
            sd_pipe.unload_lora_weights()

            # check if attention processors are reverted back to xFormers
            for _, module in sd_pipe.unet.named_modules():
                if isinstance(module, Attention):
                    self.assertIsInstance(module.processor, XFormersAttnProcessor)

458
459
460
461
462
463
464
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
    def test_lora_save_load_with_xformers(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

465
        _, _, pipeline_inputs = self.get_dummy_inputs()
466
467
468
469
470
471
472
473
474
475
476
477
478

        # enable XFormers
        sd_pipe.enable_xformers_memory_efficient_attention()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            LoraLoaderMixin.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
            )
479
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
480
481
482
483
484
485
486
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
Will Berman's avatar
Will Berman committed
487
488


489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
class SDXLLoraLoaderMixinTests(unittest.TestCase):
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
542
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
543
544

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
545
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
        text_encoder_one_lora_layers = create_text_encoder_lora_layers(text_encoder)
        text_encoder_two_lora_layers = create_text_encoder_lora_layers(text_encoder_2)

        pipeline_components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
        }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "text_encoder_one_lora_layers": text_encoder_one_lora_layers,
            "text_encoder_two_lora_layers": text_encoder_two_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
        return pipeline_components, lora_components

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    def test_lora_save_load(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        _, _, pipeline_inputs = self.get_dummy_inputs()

        original_images = sd_pipe(**pipeline_inputs).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
            )
607
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Outputs shouldn't match.
        self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

    def test_unload_lora_sdxl(self):
        pipeline_components, lora_components = self.get_dummy_components()
        _, _, pipeline_inputs = self.get_dummy_inputs(with_generator=False)
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)

        original_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice = original_images[0, -3:, -3:, -1]

        # Emulate training.
        set_lora_weights(lora_components["unet_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_one_lora_layers"].parameters(), randn_weight=True)
        set_lora_weights(lora_components["text_encoder_two_lora_layers"].parameters(), randn_weight=True)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
            )
636
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
            sd_pipe.load_lora_weights(tmpdirname)

        lora_images = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        lora_image_slice = lora_images[0, -3:, -3:, -1]

        # Unload LoRA parameters.
        sd_pipe.unload_lora_weights()
        original_images_two = sd_pipe(**pipeline_inputs, generator=torch.manual_seed(0)).images
        orig_image_slice_two = original_images_two[0, -3:, -3:, -1]

        assert not np.allclose(
            orig_image_slice, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert not np.allclose(
            orig_image_slice_two, lora_image_slice
        ), "LoRA parameters should lead to a different image slice."
        assert np.allclose(
            orig_image_slice, orig_image_slice_two, atol=1e-3
        ), "Unloading LoRA parameters should lead to results similar to what was obtained with the pipeline without any LoRA parameters."

657
658
659
660
661
662
663
664
665
666
667
668
    def test_load_lora_locally(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
Sayak Paul's avatar
Sayak Paul committed
669
                safe_serialization=False,
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

        sd_pipe.unload_lora_weights()

    def test_load_lora_locally_safetensors(self):
        pipeline_components, lora_components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLPipeline(**pipeline_components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            StableDiffusionXLPipeline.save_lora_weights(
                save_directory=tmpdirname,
                unet_lora_layers=lora_components["unet_lora_layers"],
                text_encoder_lora_layers=lora_components["text_encoder_one_lora_layers"],
                text_encoder_2_lora_layers=lora_components["text_encoder_two_lora_layers"],
                safe_serialization=True,
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            sd_pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        sd_pipe.unload_lora_weights()

695

Will Berman's avatar
Will Berman committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
@slow
@require_torch_gpu
class LoraIntegrationTests(unittest.TestCase):
    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
754
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
Will Berman's avatar
Will Berman committed
755

756
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
Will Berman's avatar
Will Berman committed
757

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    def test_kohya_sd_v15_with_higher_dimensions(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/urushisato-lora"
        lora_filename = "urushisato_v15.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])

775
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
776

Will Berman's avatar
Will Berman committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
795

796
    def test_unload_kohya_lora(self):
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
813
        generator = torch.manual_seed(0)
814
815
816
817
818
819
820
821
822
823
824
825
826
827
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

    def test_load_unload_load_kohya_lora(self):
        # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
        # without introducing any side-effects. Even though the test uses a Kohya-style
        # LoRA, the underlying adapter handling mechanism is format-agnostic.
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))

        # make sure we can load a LoRA again after unloading and they don't have
        # any undesired effects.
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images_again = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

    def test_sdxl_0_9_lora_one(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
        lora_filename = "daiton-xl-lora-test.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])

892
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

    def test_sdxl_0_9_lora_two(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
        lora_filename = "saijo.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])

910
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

    def test_sdxl_0_9_lora_three(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
        lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
926
        expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])
927

928
        self.assertTrue(np.allclose(images, expected, atol=5e-3))
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

    def test_sdxl_1_0_lora(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

946
        self.assertTrue(np.allclose(images, expected, atol=1e-3))
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

    def test_sdxl_1_0_last_ben(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "TheLastBen/Papercut_SDXL"
        lora_filename = "papercut.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))