scheduling_pndm.py 8.87 KB
Newer Older
1
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

17
import math
18
from typing import Union
Patrick von Platen's avatar
Patrick von Platen committed
19

20
import numpy as np
21
import torch
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
25
26
27
28
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
31

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
35
36
37
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
38

39
40
41
42
43
44
45
46
47
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50


class PNDMScheduler(SchedulerMixin, ConfigMixin):
51
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
52
53
    def __init__(
        self,
Nathan Lambert's avatar
Nathan Lambert committed
54
        num_train_timesteps=1000,
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
58
        tensor_format="pt",
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
    ):

        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
62
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
63
64
65
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
66
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
67
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
68
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73
74
75
76
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

Patrick von Platen's avatar
Patrick von Platen committed
77
78
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
79
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
Patrick von Platen committed
83
        self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
84
        self.counter = 0
85
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
86
87
        self.ets = []

88
89
        # setable values
        self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
90
        self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
91
92
        self.prk_timesteps = None
        self.plms_timesteps = None
Patrick von Platen's avatar
Patrick von Platen committed
93
        self.timesteps = None
94
95
96

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
97

98
99
    def set_timesteps(self, num_inference_steps):
        self.num_inference_steps = num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
100
        self._timesteps = list(
Nathan Lambert's avatar
Nathan Lambert committed
101
102
            range(0, self.config.num_train_timesteps, self.config.num_train_timesteps // num_inference_steps)
        )
Patrick von Platen's avatar
Patrick von Platen committed
103

Patrick von Platen's avatar
Patrick von Platen committed
104
        prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile(
Nathan Lambert's avatar
Nathan Lambert committed
105
            np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
106
        )
Patrick von Platen's avatar
Patrick von Platen committed
107
108
109
        self.prk_timesteps = list(reversed(prk_timesteps[:-1].repeat(2)[1:-1]))
        self.plms_timesteps = list(reversed(self._timesteps[:-3]))
        self.timesteps = self.prk_timesteps + self.plms_timesteps
Patrick von Platen's avatar
Patrick von Platen committed
110

Patrick von Platen's avatar
Patrick von Platen committed
111
        self.counter = 0
112
        self.set_format(tensor_format=self.tensor_format)
Patrick von Platen's avatar
Patrick von Platen committed
113

Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
120
121
122
123
124
    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
    ):
        if self.counter < len(self.prk_timesteps):
            return self.step_prk(model_output=model_output, timestep=timestep, sample=sample)
        else:
            return self.step_plms(model_output=model_output, timestep=timestep, sample=sample)

125
126
    def step_prk(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
127
        model_output: Union[torch.FloatTensor, np.ndarray],
128
129
130
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
    ):
Nathan Lambert's avatar
Nathan Lambert committed
131
132
133
134
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.
        """
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
        diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2
        prev_timestep = max(timestep - diff_to_prev, self.prk_timesteps[-1])
        timestep = self.prk_timesteps[self.counter // 4 * 4]
Patrick von Platen's avatar
Patrick von Platen committed
138

Patrick von Platen's avatar
Patrick von Platen committed
139
        if self.counter % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
140
141
            self.cur_model_output += 1 / 6 * model_output
            self.ets.append(model_output)
142
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
143
        elif (self.counter - 1) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
144
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
145
        elif (self.counter - 2) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
146
            self.cur_model_output += 1 / 3 * model_output
Patrick von Platen's avatar
Patrick von Platen committed
147
        elif (self.counter - 3) % 4 == 0:
Patrick von Platen's avatar
Patrick von Platen committed
148
149
            model_output = self.cur_model_output + 1 / 6 * model_output
            self.cur_model_output = 0
Patrick von Platen's avatar
Patrick von Platen committed
150

Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
157
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
        self.counter += 1

        return {"prev_sample": prev_sample}
Patrick von Platen's avatar
Patrick von Platen committed
158

159
160
    def step_plms(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
161
        model_output: Union[torch.FloatTensor, np.ndarray],
162
163
164
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
    ):
Nathan Lambert's avatar
Nathan Lambert committed
165
166
167
168
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.
        """
Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
172
173
174
175
176
        if len(self.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
177
        prev_timestep = max(timestep - self.config.num_train_timesteps // self.num_inference_steps, 0)
Patrick von Platen's avatar
Patrick von Platen committed
178
        self.ets.append(model_output)
Patrick von Platen's avatar
Patrick von Platen committed
179

Patrick von Platen's avatar
Patrick von Platen committed
180
        model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
Patrick von Platen's avatar
Patrick von Platen committed
181

Patrick von Platen's avatar
Patrick von Platen committed
182
183
184
185
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
        self.counter += 1

        return {"prev_sample": prev_sample}
Patrick von Platen's avatar
Patrick von Platen committed
186

Patrick von Platen's avatar
Patrick von Platen committed
187
    def _get_prev_sample(self, sample, timestep, timestep_prev, model_output):
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
192
193
194
195
196
197
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
Patrick von Platen's avatar
Patrick von Platen committed
198
        # model_output -> e_θ(x_t, t)
Patrick von Platen's avatar
Patrick von Platen committed
199
        # prev_sample -> x_(t−δ)
Patrick von Platen's avatar
Patrick von Platen committed
200
201
        alpha_prod_t = self.alphas_cumprod[timestep + 1]
        alpha_prod_t_prev = self.alphas_cumprod[timestep_prev + 1]
Patrick von Platen's avatar
Patrick von Platen committed
202
203
204
205
206
207
208
209
210
211
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
212
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
Patrick von Platen's avatar
Patrick von Platen committed
213
214
215
216
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )
Patrick von Platen's avatar
Patrick von Platen committed
220
221

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
222
223

    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
224
        return self.config.num_train_timesteps