".github/vscode:/vscode.git/clone" did not exist on "be0b6d96b74630b7bce55c9c0770bde990e937df"
resnet.py 24.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
from abc import abstractmethod
patil-suraj's avatar
patil-suraj committed
2
from functools import partial
Patrick von Platen's avatar
Patrick von Platen committed
3
4

import numpy as np
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
import torch.nn.functional as F


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")

patil-suraj's avatar
patil-suraj committed
35

36
37
38
39
40
41
42
43
44
45
46
47
48
def conv_transpose_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.ConvTranspose1d(*args, **kwargs)
    elif dims == 2:
        return nn.ConvTranspose2d(*args, **kwargs)
    elif dims == 3:
        return nn.ConvTranspose3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


49
50
def Normalize(in_channels, num_groups=32, eps=1e-6):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
51
52
53
54
55
56
57
58
59
60


def nonlinearity(x, swish=1.0):
    # swish
    if swish == 1.0:
        return F.silu(x)
    else:
        return x * F.sigmoid(x * float(swish))


Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


73
74
75
76
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
77
78
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
79
80
81
                 upsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
82
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None, name="conv"):
83
84
85
86
87
88
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
89
        self.name = name
90

patil-suraj's avatar
patil-suraj committed
91
        conv = None
92
        if use_conv_transpose:
patil-suraj's avatar
patil-suraj committed
93
            conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1)
94
        elif use_conv:
patil-suraj's avatar
patil-suraj committed
95
96
97
98
99
100
            conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)

        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
101
102
103
104
105

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
106

107
108
109
110
        if self.dims == 3:
            x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest")
        else:
            x = F.interpolate(x, scale_factor=2.0, mode="nearest")
patil-suraj's avatar
patil-suraj committed
111

112
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
113
114
115
116
            if self.name == "conv":
                x = self.conv(x)
            else:
                x = self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
117

118
119
120
121
122
123
124
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
125
126
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
127
128
129
                 downsampling occurs in the inner-two dimensions.
    """

patil-suraj's avatar
patil-suraj committed
130
    def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"):
131
132
133
134
135
136
137
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.padding = padding
        stride = 2 if dims != 3 else (1, 2, 2)
patil-suraj's avatar
patil-suraj committed
138
139
        self.name = name

140
        if use_conv:
patil-suraj's avatar
patil-suraj committed
141
            conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
142
143
        else:
            assert self.channels == self.out_channels
patil-suraj's avatar
patil-suraj committed
144
145
146
147
            conv = avg_pool_nd(dims, kernel_size=stride, stride=stride)

        if name == "conv":
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
148
149
        elif name == "Conv2d_0":
            self.Conv2d_0 = conv
patil-suraj's avatar
patil-suraj committed
150
151
        else:
            self.op = conv
152
153
154
155
156
157

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv and self.padding == 0 and self.dims == 2:
            pad = (0, 1, 0, 1)
            x = F.pad(x, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
158
159
160

        if self.name == "conv":
            return self.conv(x)
patil-suraj's avatar
patil-suraj committed
161
162
        elif self.name == "Conv2d_0":
            return self.Conv2d_0(x)
patil-suraj's avatar
patil-suraj committed
163
164
        else:
            return self.op(x)
165
166


Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
# TODO (patil-suraj): needs test
# class Upsample1d(nn.Module):
#    def __init__(self, dim):
#        super().__init__()
#        self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1)
#
#    def forward(self, x):
#        return self.conv(x)
175
176


Patrick von Platen's avatar
Patrick von Platen committed
177
# RESNETS
Patrick von Platen's avatar
Patrick von Platen committed
178

Patrick von Platen's avatar
Patrick von Platen committed
179
# unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py
180
class ResnetBlock(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
181
182
183
184
185
186
187
188
189
190
191
192
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
        time_embedding_norm="default",
        up=False,
        down=False,
Patrick von Platen's avatar
Patrick von Platen committed
196
        overwrite_for_grad_tts=False,
Patrick von Platen's avatar
up  
Patrick von Platen committed
197
        overwrite_for_ldm=False,
Patrick von Platen's avatar
Patrick von Platen committed
198
        overwrite_for_glide=False,
Patrick von Platen's avatar
Patrick von Platen committed
199
    ):
200
201
202
203
204
205
        super().__init__()
        self.pre_norm = pre_norm
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
        self.time_embedding_norm = time_embedding_norm
        self.up = up
        self.down = down
209
210
211
212
213
214
215

        if self.pre_norm:
            self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps)

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218

        if time_embedding_norm == "default":
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
Patrick von Platen's avatar
Patrick von Platen committed
219
        elif time_embedding_norm == "scale_shift":
Patrick von Platen's avatar
Patrick von Platen committed
220
221
            self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)

222
223
224
        self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
Patrick von Platen's avatar
up  
Patrick von Platen committed
225

226
227
228
229
        if non_linearity == "swish":
            self.nonlinearity = nonlinearity
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
Patrick von Platen's avatar
up  
Patrick von Platen committed
230
231
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
232

Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
236
237
238
239
        if up:
            self.h_upd = Upsample(in_channels, use_conv=False, dims=2)
            self.x_upd = Upsample(in_channels, use_conv=False, dims=2)
        elif down:
            self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")
            self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op")

240
        if self.in_channels != self.out_channels:
Patrick von Platen's avatar
Patrick von Platen committed
241
            self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
242

Patrick von Platen's avatar
Patrick von Platen committed
243
        # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED
244
        self.is_overwritten = False
Patrick von Platen's avatar
Patrick von Platen committed
245
        self.overwrite_for_glide = overwrite_for_glide
246
        self.overwrite_for_grad_tts = overwrite_for_grad_tts
Patrick von Platen's avatar
Patrick von Platen committed
247
        self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide
248
249
250
251
252
253
254
255
256
257
258
259
260
        if self.overwrite_for_grad_tts:
            dim = in_channels
            dim_out = out_channels
            time_emb_dim = temb_channels
            self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
            self.pre_norm = pre_norm

            self.block1 = Block(dim, dim_out, groups=groups)
            self.block2 = Block(dim_out, dim_out, groups=groups)
            if dim != dim_out:
                self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
            else:
                self.res_conv = torch.nn.Identity()
Patrick von Platen's avatar
up  
Patrick von Platen committed
261
262
        elif self.overwrite_for_ldm:
            dims = 2
Patrick von Platen's avatar
up  
Patrick von Platen committed
263
264
265
            #            eps = 1e-5
            #            non_linearity = "silu"
            #            overwrite_for_ldm
Patrick von Platen's avatar
up  
Patrick von Platen committed
266
267
268
269
270
271
272
273
274
275
276
277
278
            channels = in_channels
            emb_channels = temb_channels
            use_scale_shift_norm = False

            self.in_layers = nn.Sequential(
                normalization(channels, swish=1.0),
                nn.Identity(),
                conv_nd(dims, channels, self.out_channels, 3, padding=1),
            )
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
Patrick von Platen's avatar
Patrick von Platen committed
279
                    2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels,
Patrick von Platen's avatar
up  
Patrick von Platen committed
280
281
282
283
284
285
286
287
288
289
290
291
                ),
            )
            self.out_layers = nn.Sequential(
                normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
                nn.SiLU() if use_scale_shift_norm else nn.Identity(),
                nn.Dropout(p=dropout),
                zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
            )
            if self.out_channels == in_channels:
                self.skip_connection = nn.Identity()
            else:
                self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

    def set_weights_grad_tts(self):
        self.conv1.weight.data = self.block1.block[0].weight.data
        self.conv1.bias.data = self.block1.block[0].bias.data
        self.norm1.weight.data = self.block1.block[1].weight.data
        self.norm1.bias.data = self.block1.block[1].bias.data

        self.conv2.weight.data = self.block2.block[0].weight.data
        self.conv2.bias.data = self.block2.block[0].bias.data
        self.norm2.weight.data = self.block2.block[1].weight.data
        self.norm2.bias.data = self.block2.block[1].bias.data

        self.temb_proj.weight.data = self.mlp[1].weight.data
        self.temb_proj.bias.data = self.mlp[1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.res_conv.weight.data
            self.nin_shortcut.bias.data = self.res_conv.bias.data

Patrick von Platen's avatar
up  
Patrick von Platen committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def set_weights_ldm(self):
        self.norm1.weight.data = self.in_layers[0].weight.data
        self.norm1.bias.data = self.in_layers[0].bias.data

        self.conv1.weight.data = self.in_layers[-1].weight.data
        self.conv1.bias.data = self.in_layers[-1].bias.data

        self.temb_proj.weight.data = self.emb_layers[-1].weight.data
        self.temb_proj.bias.data = self.emb_layers[-1].bias.data

        self.norm2.weight.data = self.out_layers[0].weight.data
        self.norm2.bias.data = self.out_layers[0].bias.data

        self.conv2.weight.data = self.out_layers[-1].weight.data
        self.conv2.bias.data = self.out_layers[-1].bias.data

        if self.in_channels != self.out_channels:
            self.nin_shortcut.weight.data = self.skip_connection.weight.data
            self.nin_shortcut.bias.data = self.skip_connection.bias.data

    def forward(self, x, temb, mask=1.0):
Patrick von Platen's avatar
Patrick von Platen committed
332
333
        # TODO(Patrick) eventually this class should be split into multiple classes
        # too many if else statements
334
335
336
        if self.overwrite_for_grad_tts and not self.is_overwritten:
            self.set_weights_grad_tts()
            self.is_overwritten = True
Patrick von Platen's avatar
up  
Patrick von Platen committed
337
338
339
        elif self.overwrite_for_ldm and not self.is_overwritten:
            self.set_weights_ldm()
            self.is_overwritten = True
340
341

        h = x
Patrick von Platen's avatar
up  
Patrick von Platen committed
342
        h = h * mask
343
344
345
346
        if self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)

Patrick von Platen's avatar
Patrick von Platen committed
347
        if self.up or self.down:
Patrick von Platen's avatar
Patrick von Platen committed
348
            x = self.x_upd(x)
Patrick von Platen's avatar
Patrick von Platen committed
349
350
            h = self.h_upd(h)

351
352
353
354
355
        h = self.conv1(h)

        if not self.pre_norm:
            h = self.norm1(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
356
        h = h * mask
357

Patrick von Platen's avatar
Patrick von Platen committed
358
        temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None]
Patrick von Platen's avatar
Patrick von Platen committed
359

Patrick von Platen's avatar
Patrick von Platen committed
360
361
        if self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
362
363

            h = self.norm2(h)
Patrick von Platen's avatar
Patrick von Platen committed
364
            h = h + h * scale + shift
365
            h = self.nonlinearity(h)
Patrick von Platen's avatar
Patrick von Platen committed
366
367
368
369
370
371
        elif self.time_embedding_norm == "default":
            h = h + temb
            h = h * mask
            if self.pre_norm:
                h = self.norm2(h)
                h = self.nonlinearity(h)
372
373
374
375
376
377
378

        h = self.dropout(h)
        h = self.conv2(h)

        if not self.pre_norm:
            h = self.norm2(h)
            h = self.nonlinearity(h)
Patrick von Platen's avatar
up  
Patrick von Platen committed
379
        h = h * mask
380

Patrick von Platen's avatar
up  
Patrick von Platen committed
381
        x = x * mask
382
        if self.in_channels != self.out_channels:
Patrick von Platen's avatar
Patrick von Platen committed
383
            x = self.nin_shortcut(x)
384
385
386
387

        return x + h


Patrick von Platen's avatar
finish  
Patrick von Platen committed
388
# TODO(Patrick) - just there to convert the weights; can delete afterward
389
390
391
392
393
class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        )


# unet_score_estimation.py
class ResnetBlockBigGANpp(nn.Module):
    def __init__(
        self,
        act,
        in_ch,
        out_ch=None,
        temb_dim=None,
        up=False,
        down=False,
        dropout=0.1,
patil-suraj's avatar
patil-suraj committed
408
        fir=False,
Patrick von Platen's avatar
Patrick von Platen committed
409
410
411
412
413
414
415
416
417
418
        fir_kernel=(1, 3, 3, 1),
        skip_rescale=True,
        init_scale=0.0,
    ):
        super().__init__()

        out_ch = out_ch if out_ch else in_ch
        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6)
        self.up = up
        self.down = down
patil-suraj's avatar
patil-suraj committed
419
        self.fir = fir
Patrick von Platen's avatar
Patrick von Platen committed
420
421
        self.fir_kernel = fir_kernel

patil-suraj's avatar
patil-suraj committed
422
423
424
425
426
427
428
429
430
431
432
        if self.up:
            if self.fir:
                self.upsample = partial(upsample_2d, k=self.fir_kernel, factor=2)
            else:
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
        elif self.down:
            if self.fir:
                self.downsample = partial(downsample_2d, k=self.fir_kernel, factor=2)
            else:
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)

patil-suraj's avatar
patil-suraj committed
433
        self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
434
435
        if temb_dim is not None:
            self.Dense_0 = nn.Linear(temb_dim, out_ch)
patil-suraj's avatar
patil-suraj committed
436
            self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape)
Patrick von Platen's avatar
Patrick von Platen committed
437
438
439
440
            nn.init.zeros_(self.Dense_0.bias)

        self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6)
        self.Dropout_0 = nn.Dropout(dropout)
patil-suraj's avatar
patil-suraj committed
441
        self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
442
        if in_ch != out_ch or up or down:
patil-suraj's avatar
style  
patil-suraj committed
443
            # 1x1 convolution with DDPM initialization.
patil-suraj's avatar
patil-suraj committed
444
            self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
445
446
447
448
449
450
451
452
453
454

        self.skip_rescale = skip_rescale
        self.act = act
        self.in_ch = in_ch
        self.out_ch = out_ch

    def forward(self, x, temb=None):
        h = self.act(self.GroupNorm_0(x))

        if self.up:
patil-suraj's avatar
patil-suraj committed
455
456
            h = self.upsample(h)
            x = self.upsample(x)
Patrick von Platen's avatar
Patrick von Platen committed
457
        elif self.down:
patil-suraj's avatar
patil-suraj committed
458
459
            h = self.downsample(h)
            x = self.downsample(x)
Patrick von Platen's avatar
Patrick von Platen committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

        h = self.Conv_0(h)
        # Add bias to each feature map conditioned on the time embedding
        if temb is not None:
            h += self.Dense_0(self.act(temb))[:, :, None, None]
        h = self.act(self.GroupNorm_1(h))
        h = self.Dropout_0(h)
        h = self.Conv_1(h)

        if self.in_ch != self.out_ch or self.up or self.down:
            x = self.Conv_2(x)

        if not self.skip_rescale:
            return x + h
        else:
            return (x + h) / np.sqrt(2.0)


478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# unet_rl.py
class ResidualTemporalBlock(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5):
        super().__init__()

        self.blocks = nn.ModuleList(
            [
                Conv1dBlock(inp_channels, out_channels, kernel_size),
                Conv1dBlock(out_channels, out_channels, kernel_size),
            ]
        )

        self.time_mlp = nn.Sequential(
            nn.Mish(),
            nn.Linear(embed_dim, out_channels),
            RearrangeDim(),
            #            Rearrange("batch t -> batch t 1"),
        )

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x
        out_channels x horizon ]
        """
        out = self.blocks[0](x) + self.time_mlp(t)
        out = self.blocks[1](out)
        return out + self.residual_conv(x)


Patrick von Platen's avatar
Patrick von Platen committed
511
512
513
514
# HELPER Modules


def normalization(channels, swish=0.0):
515
    """
Patrick von Platen's avatar
Patrick von Platen committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
547
    """
Patrick von Platen's avatar
Patrick von Platen committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    for p in module.parameters():
        p.detach().zero_()
    return module


class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
564
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
565
566
567
568
569
570
571
572
573
574

        self.block = nn.Sequential(
            nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
            RearrangeDim(),
            #            Rearrange("batch channels horizon -> batch channels 1 horizon"),
            nn.GroupNorm(n_groups, out_channels),
            RearrangeDim(),
            #            Rearrange("batch channels 1 horizon -> batch channels horizon"),
            nn.Mish(),
        )
575
576

    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
        return self.block(x)


class RearrangeDim(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, tensor):
        if len(tensor.shape) == 2:
            return tensor[:, :, None]
        if len(tensor.shape) == 3:
            return tensor[:, :, None, :]
        elif len(tensor.shape) == 4:
            return tensor[:, :, 0, :]
591
        else:
Patrick von Platen's avatar
Patrick von Platen committed
592
593
594
            raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


patil-suraj's avatar
patil-suraj committed
595
596
def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1):
    """nXn convolution with DDPM initialization."""
patil-suraj's avatar
style  
patil-suraj committed
597
    conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
patil-suraj's avatar
patil-suraj committed
598
    conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape)
Patrick von Platen's avatar
Patrick von Platen committed
599
600
601
602
    nn.init.zeros_(conv.bias)
    return conv


patil-suraj's avatar
patil-suraj committed
603
def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"):
Patrick von Platen's avatar
Patrick von Platen committed
604
    """Ported from JAX."""
patil-suraj's avatar
patil-suraj committed
605
    scale = 1e-10 if scale == 0 else scale
Patrick von Platen's avatar
Patrick von Platen committed
606
607
608
609
610
611
612
613
614

    def _compute_fans(shape, in_axis=1, out_axis=0):
        receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis]
        fan_in = shape[in_axis] * receptive_field_size
        fan_out = shape[out_axis] * receptive_field_size
        return fan_in, fan_out

    def init(shape, dtype=dtype, device=device):
        fan_in, fan_out = _compute_fans(shape, in_axis, out_axis)
patil-suraj's avatar
patil-suraj committed
615
        denominator = (fan_in + fan_out) / 2
Patrick von Platen's avatar
Patrick von Platen committed
616
        variance = scale / denominator
patil-suraj's avatar
patil-suraj committed
617
        return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance)
618

Patrick von Platen's avatar
Patrick von Platen committed
619
    return init
620
621


Patrick von Platen's avatar
Patrick von Platen committed
622
623
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
    return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
624
625


Patrick von Platen's avatar
Patrick von Platen committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
    _, channel, in_h, in_w = input.shape
    input = input.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = input.shape
    kernel_h, kernel_w = kernel.shape

    out = input.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(x, k=None, factor=2, gain=1):
    r"""Upsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a:
    multiple of the upsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
        factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * (gain * (factor**2))
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2))


def downsample_2d(x, k=None, factor=2, gain=1):
    r"""Downsample a batch of 2D images with the given filter.

    Args:
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
        x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,
          C]`.
        k: FIR filter of the shape `[firH, firW]` or `[firN]`
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
        factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).

    Returns:
        Tensor of the shape `[N, C, H // factor, W // factor]`
    """

    assert isinstance(factor, int) and factor >= 1
    if k is None:
        k = [1] * factor
    k = _setup_kernel(k) * gain
    p = k.shape[0] - factor
    return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2))


def _setup_kernel(k):
    k = np.asarray(k, dtype=np.float32)
    if k.ndim == 1:
        k = np.outer(k, k)
    k /= np.sum(k)
    assert k.ndim == 2
    assert k.shape[0] == k.shape[1]
    return k