scheduling_euler_ancestral_discrete.py 22.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Literal, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27
28
29
30
31
32
33
34


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
36
37

    Args:
38
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
40
            denoising loop.
41
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

46
47
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
hlky's avatar
hlky committed
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
def betas_for_alpha_bar(
52
53
54
55
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
56
57
58
59
60
61
62
63
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
64
65
66
67
68
69
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
70
71

    Returns:
72
73
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
74
    """
YiYi Xu's avatar
YiYi Xu committed
75
    if alpha_transform_type == "cosine":
76

YiYi Xu's avatar
YiYi Xu committed
77
78
79
80
81
82
83
84
85
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
86
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
87
88
89
90
91

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
92
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
93
94
95
    return torch.tensor(betas, dtype=torch.float32)


96
97
98
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
99
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
100
101

    Args:
102
        betas (`torch.Tensor`):
103
            The betas that the scheduler is being initialized with.
104
105

    Returns:
106
107
        `torch.Tensor`:
            Rescaled betas with zero terminal SNR.
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


hlky's avatar
hlky committed
133
134
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
135
    Ancestral sampling with Euler method steps.
hlky's avatar
hlky committed
136

137
138
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
139
140

    Args:
141
142
143
144
145
146
147
148
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
149
            `linear` or `scaled_linear`.
150
151
152
153
154
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
155
            Video](https://huggingface.co/papers/2210.02303) paper).
156
157
158
159
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
160
            An offset added to the inference steps, as required by some model families.
161
162
163
164
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
hlky's avatar
hlky committed
165
166
    """

Kashif Rasul's avatar
Kashif Rasul committed
167
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
168
    order = 1
169

hlky's avatar
hlky committed
170
171
172
173
174
175
176
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
177
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
178
        prediction_type: str = "epsilon",
179
180
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
181
        rescale_betas_zero_snr: bool = False,
hlky's avatar
hlky committed
182
183
    ):
        if trained_betas is not None:
184
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
185
186
187
188
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
189
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
190
191
192
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
193
        else:
194
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
hlky's avatar
hlky committed
195

196
197
198
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

hlky's avatar
hlky committed
199
200
201
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

202
203
204
205
206
        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

hlky's avatar
hlky committed
207
208
209
210
211
212
213
214
215
216
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.is_scale_input_called = False

YiYi Xu's avatar
YiYi Xu committed
217
        self._step_index = None
218
        self._begin_index = None
219
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
220

221
222
223
224
225
226
227
228
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
229
230
231
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
232
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
233
234
235
        """
        return self._step_index

236
237
238
239
240
241
242
243
244
245
246
247
248
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
249
            begin_index (`int`, defaults to `0`):
250
251
252
253
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

254
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
hlky's avatar
hlky committed
255
        """
256
257
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
258
259

        Args:
260
            sample (`torch.Tensor`):
261
262
263
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
264
265

        Returns:
266
            `torch.Tensor`:
267
                A scaled input sample.
hlky's avatar
hlky committed
268
        """
YiYi Xu's avatar
YiYi Xu committed
269
270
271
272
273

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
274
275
276
277
278
279
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
280
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
281
282
283

        Args:
            num_inference_steps (`int`):
284
285
286
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
hlky's avatar
hlky committed
287
288
289
        """
        self.num_inference_steps = num_inference_steps

Quentin Gallouédec's avatar
Quentin Gallouédec committed
290
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
291
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
292
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
293
294
295
296
297
298
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
299
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
300
301
302
303
304
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
305
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
306
307
308
309
310
311
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

hlky's avatar
hlky committed
312
313
314
315
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
316
317
318

        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None
319
        self._begin_index = None
320
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
321

322
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    def index_for_timestep(
        self, timestep: Union[float, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index of a given timestep in the timestep schedule.

        Args:
            timestep (`float` or `torch.Tensor`):
                The timestep value to find in the schedule.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule. For the very first step, returns the second index if
                multiple matches exist to avoid skipping a sigma when starting mid-schedule (e.g., for image-to-image).
        """
340
341
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
342

343
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
344
345
346
347
348

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
349
350
351
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()
YiYi Xu's avatar
YiYi Xu committed
352

353
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
354
355
356
357
358
359
360
361
    def _init_step_index(self, timestep: Union[float, torch.Tensor]) -> None:
        """
        Initialize the step index for the scheduler based on the given timestep.

        Args:
            timestep (`float` or `torch.Tensor`):
                The current timestep to initialize the step index from.
        """
362
363
364
365
366
367
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
hlky's avatar
hlky committed
368
369
370

    def step(
        self,
371
372
373
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
hlky's avatar
hlky committed
374
375
376
377
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
        """
378
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
379
380
381
        process from the learned model outputs (most often the predicted noise).

        Args:
382
            model_output (`torch.Tensor`):
383
384
385
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
386
            sample (`torch.Tensor`):
387
388
389
390
391
392
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
hlky's avatar
hlky committed
393
394

        Returns:
395
396
397
398
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
399
400
401

        """

402
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
hlky's avatar
hlky committed
403
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
404
405
406
407
408
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
409
410
411
            )

        if not self.is_scale_input_called:
412
            logger.warning(
hlky's avatar
hlky committed
413
414
415
416
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
417
418
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
419

YiYi Xu's avatar
YiYi Xu committed
420
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
421

422
423
424
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

hlky's avatar
hlky committed
425
        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
426
427
428
429
430
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
431
432
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
433
434
435
436
437
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

YiYi Xu's avatar
YiYi Xu committed
438
439
        sigma_from = self.sigmas[self.step_index]
        sigma_to = self.sigmas[self.step_index + 1]
hlky's avatar
hlky committed
440
441
442
443
444
445
446
447
448
449
        sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
        sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma

        dt = sigma_down - sigma

        prev_sample = sample + derivative * dt

Patrick von Platen's avatar
Patrick von Platen committed
450
        device = model_output.device
451
        noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
452

hlky's avatar
hlky committed
453
454
        prev_sample = prev_sample + noise * sigma_up

455
456
457
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

YiYi Xu's avatar
YiYi Xu committed
458
459
460
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
461
        if not return_dict:
462
463
464
465
            return (
                prev_sample,
                pred_original_sample,
            )
hlky's avatar
hlky committed
466
467
468
469
470

        return EulerAncestralDiscreteSchedulerOutput(
            prev_sample=prev_sample, pred_original_sample=pred_original_sample
        )

471
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
hlky's avatar
hlky committed
472
473
    def add_noise(
        self,
474
475
476
477
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise tensor to add to the original samples.
            timesteps (`torch.Tensor`):
                The timesteps at which to add noise, determining the noise level from the schedule.

        Returns:
            `torch.Tensor`:
                The noisy samples with added noise scaled according to the timestep schedule.
        """
hlky's avatar
hlky committed
493
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
494
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
495
496
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
497
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
498
499
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
500
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
501
502
            timesteps = timesteps.to(original_samples.device)

503
504
505
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
506
507
508
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
509
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
510
            # add noise is called before first denoising step to create initial latent(img2img)
511
            step_indices = [self.begin_index] * timesteps.shape[0]
hlky's avatar
hlky committed
512

513
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
514
515
516
517
518
519
520
521
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps