scheduling_euler_ancestral_discrete.py 17 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
23
24
from ..utils import BaseOutput, logging, randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
25
26
27
28
29
30
31
32
33


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
    """
34
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
35
36
37

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
39
40
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
42
43
44
45
46
47
48
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


49
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
50
51
52
53
54
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
55
56
57
58
59
60
61
62
63
64
65
66
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
67
68
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
69
70
71
72

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
73
    if alpha_transform_type == "cosine":
74

YiYi Xu's avatar
YiYi Xu committed
75
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85
86
87
88
89

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
90
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
91
92
93
    return torch.tensor(betas, dtype=torch.float32)


hlky's avatar
hlky committed
94
95
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
96
    Ancestral sampling with Euler method steps.
hlky's avatar
hlky committed
97

98
99
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
100
101

    Args:
102
103
104
105
106
107
108
109
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
110
            `linear` or `scaled_linear`.
111
112
113
114
115
116
117
118
119
120
121
122
123
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
hlky's avatar
hlky committed
124
125
    """

Kashif Rasul's avatar
Kashif Rasul committed
126
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
127
    order = 1
128

hlky's avatar
hlky committed
129
130
131
132
133
134
135
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
136
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
137
        prediction_type: str = "epsilon",
138
139
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
hlky's avatar
hlky committed
140
141
    ):
        if trained_betas is not None:
142
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
143
144
145
146
147
148
149
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
150
151
152
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.is_scale_input_called = False

YiYi Xu's avatar
YiYi Xu committed
169
170
        self._step_index = None

171
172
173
174
175
176
177
178
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
179
180
181
182
183
184
185
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

hlky's avatar
hlky committed
186
187
188
189
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
190
191
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
192
193

        Args:
194
195
196
197
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
198
199

        Returns:
200
201
            `torch.FloatTensor`:
                A scaled input sample.
hlky's avatar
hlky committed
202
        """
YiYi Xu's avatar
YiYi Xu committed
203
204
205
206
207

        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
208
209
210
211
212
213
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
214
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
215
216
217

        Args:
            num_inference_steps (`int`):
218
219
220
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
hlky's avatar
hlky committed
221
222
223
        """
        self.num_inference_steps = num_inference_steps

224
225
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
226
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
227
228
229
230
231
232
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
233
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
234
235
236
237
238
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
239
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
240
241
242
243
244
245
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

hlky's avatar
hlky committed
246
247
248
249
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
YiYi Xu's avatar
YiYi Xu committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        self.timesteps = torch.from_numpy(timesteps).to(device=device)
        self._step_index = None

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
267
        else:
YiYi Xu's avatar
YiYi Xu committed
268
269
270
            step_index = index_candidates[0]

        self._step_index = step_index.item()
hlky's avatar
hlky committed
271
272
273
274
275
276
277
278
279
280

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
        """
281
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
282
283
284
        process from the learned model outputs (most often the predicted noise).

        Args:
285
286
287
288
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
hlky's avatar
hlky committed
289
            sample (`torch.FloatTensor`):
290
291
292
293
294
295
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
hlky's avatar
hlky committed
296
297

        Returns:
298
299
300
301
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
302
303
304
305
306
307
308
309
310

        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313
314
315
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
316
317
318
            )

        if not self.is_scale_input_called:
319
            logger.warning(
hlky's avatar
hlky committed
320
321
322
323
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
324
325
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
326

YiYi Xu's avatar
YiYi Xu committed
327
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
328
329

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
330
331
332
333
334
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
335
336
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
337
338
339
340
341
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

YiYi Xu's avatar
YiYi Xu committed
342
343
        sigma_from = self.sigmas[self.step_index]
        sigma_to = self.sigmas[self.step_index + 1]
hlky's avatar
hlky committed
344
345
346
347
348
349
350
351
352
353
        sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
        sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma

        dt = sigma_down - sigma

        prev_sample = sample + derivative * dt

Patrick von Platen's avatar
Patrick von Platen committed
354
        device = model_output.device
355
        noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
356

hlky's avatar
hlky committed
357
358
        prev_sample = prev_sample + noise * sigma_up

YiYi Xu's avatar
YiYi Xu committed
359
360
361
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
362
363
364
365
366
367
368
        if not return_dict:
            return (prev_sample,)

        return EulerAncestralDiscreteSchedulerOutput(
            prev_sample=prev_sample, pred_original_sample=pred_original_sample
        )

369
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
hlky's avatar
hlky committed
370
371
372
373
374
375
376
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
377
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
378
379
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
380
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
381
382
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
383
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
384
385
            timesteps = timesteps.to(original_samples.device)

Anton Lozhkov's avatar
Anton Lozhkov committed
386
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
hlky's avatar
hlky committed
387

388
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
389
390
391
392
393
394
395
396
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps