Unverified Commit 457abdf2 authored by Beinsezii's avatar Beinsezii Committed by GitHub
Browse files

EulerAncestral add `rescale_betas_zero_snr` (#6187)



* EulerAncestral add `rescale_betas_zero_snr`

Uses same infinite sigma fix from EulerDiscrete. Interestingly the
ancestral version had the opposite problem: too much contrast instead of
too little.

* UT for EulerAncestral `rescale_betas_zero_snr`

* EulerAncestral upcast samples during step()

It helps this scheduler too, particularly when the model is using bf16.

While the noise dtype is still the model's it's automatically upcasted
for the add so all it affects is determinism.

---------
Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
parent ff43dba7
...@@ -92,6 +92,43 @@ def betas_for_alpha_bar( ...@@ -92,6 +92,43 @@ def betas_for_alpha_bar(
return torch.tensor(betas, dtype=torch.float32) return torch.tensor(betas, dtype=torch.float32)
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
"""
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
Args:
betas (`torch.FloatTensor`):
the betas that the scheduler is being initialized with.
Returns:
`torch.FloatTensor`: rescaled betas with zero terminal SNR
"""
# Convert betas to alphas_bar_sqrt
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= alphas_bar_sqrt_T
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
alphas = torch.cat([alphas_bar[0:1], alphas])
betas = 1 - alphas
return betas
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
""" """
Ancestral sampling with Euler method steps. Ancestral sampling with Euler method steps.
...@@ -122,6 +159,10 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -122,6 +159,10 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
An offset added to the inference steps. You can use a combination of `offset=1` and An offset added to the inference steps. You can use a combination of `offset=1` and
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
Diffusion. Diffusion.
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
""" """
_compatibles = [e.name for e in KarrasDiffusionSchedulers] _compatibles = [e.name for e in KarrasDiffusionSchedulers]
...@@ -138,6 +179,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -138,6 +179,7 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type: str = "epsilon", prediction_type: str = "epsilon",
timestep_spacing: str = "linspace", timestep_spacing: str = "linspace",
steps_offset: int = 0, steps_offset: int = 0,
rescale_betas_zero_snr: bool = False,
): ):
if trained_betas is not None: if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32) self.betas = torch.tensor(trained_betas, dtype=torch.float32)
...@@ -152,9 +194,17 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -152,9 +194,17 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
else: else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
if rescale_betas_zero_snr:
# Close to 0 without being 0 so first sigma is not inf
# FP16 smallest positive subnormal works well here
self.alphas_cumprod[-1] = 2**-24
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas) self.sigmas = torch.from_numpy(sigmas)
...@@ -327,6 +377,9 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -327,6 +377,9 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
sigma = self.sigmas[self.step_index] sigma = self.sigmas[self.step_index]
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon": if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma * model_output pred_original_sample = sample - sigma * model_output
...@@ -357,6 +410,9 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): ...@@ -357,6 +410,9 @@ class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
prev_sample = prev_sample + noise * sigma_up prev_sample = prev_sample + noise * sigma_up
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one # upon completion increase step index by one
self._step_index += 1 self._step_index += 1
......
...@@ -37,6 +37,10 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest): ...@@ -37,6 +37,10 @@ class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):
for prediction_type in ["epsilon", "v_prediction"]: for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type) self.check_over_configs(prediction_type=prediction_type)
def test_rescale_betas_zero_snr(self):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr)
def test_full_loop_no_noise(self): def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0] scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config() scheduler_config = self.get_scheduler_config()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment