scheduling_deis_multistep.py 42.9 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 FLAIR Lab and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
15
# DISCLAIMER: check https://huggingface.co/papers/2204.13902 and https://github.com/qsh-zh/deis for more info
16
17
18
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
19
from typing import List, Literal, Optional, Tuple, Union
20
21
22
23
24

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
34
def betas_for_alpha_bar(
35
36
37
38
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
47
48
49
50
51
52
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
53
54

    Returns:
55
56
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
57
    """
YiYi Xu's avatar
YiYi Xu committed
58
    if alpha_transform_type == "cosine":
59

YiYi Xu's avatar
YiYi Xu committed
60
61
62
63
64
65
66
67
68
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
69
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
70
71
72
73
74

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
75
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
76
77
78
79
80
    return torch.tensor(betas, dtype=torch.float32)


class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
81
    `DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
82

83
84
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
85
86

    Args:
87
88
89
90
91
92
93
94
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
95
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
96
97
98
99
100
101
102
103
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
104
            Video](https://huggingface.co/papers/2210.02303) paper).
105
106
107
108
109
110
111
112
113
114
115
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        algorithm_type (`str`, defaults to `deis`):
            The algorithm type for the solver.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
116
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
117
118
             Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
             the sigmas are determined according to a sequence of noise levels {σi}.
119
120
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
121
122
123
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
124
125
126
127
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
128
            An offset added to the inference steps, as required by some model families.
129
130
    """

Kashif Rasul's avatar
Kashif Rasul committed
131
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "deis",
        solver_type: str = "logrho",
        lower_order_final: bool = True,
150
        use_karras_sigmas: Optional[bool] = False,
151
        use_exponential_sigmas: Optional[bool] = False,
152
        use_beta_sigmas: Optional[bool] = False,
153
154
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
155
156
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
157
158
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
159
    ):
160
161
162
163
164
165
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
166
167
168
169
170
171
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
172
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
173
174
175
176
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
177
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
178
179
180
181
182
183
184

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
185
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
186
187
188
189
190
191
192

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DEIS
        if algorithm_type not in ["deis"]:
            if algorithm_type in ["dpmsolver", "dpmsolver++"]:
193
                self.register_to_config(algorithm_type="deis")
194
            else:
195
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
196
197

        if solver_type not in ["logrho"]:
198
            if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
199
                self.register_to_config(solver_type="logrho")
200
            else:
201
                raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
202
203
204
205
206
207
208

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
209
        self._step_index = None
210
        self._begin_index = None
211
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
212
213
214
215

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
216
        The index counter for current timestep. It will increase 1 after each scheduler step.
217
218
        """
        return self._step_index
219

220
221
222
223
224
225
226
227
228
229
230
231
232
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
233
            begin_index (`int`, defaults to `0`):
234
235
236
237
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

238
239
240
    def set_timesteps(
        self, num_inference_steps: int, device: Union[str, torch.device] = None, mu: Optional[float] = None
    ):
241
        """
242
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
243
244
245

        Args:
            num_inference_steps (`int`):
246
247
248
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
249
        """
250
251
252
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
Quentin Gallouédec's avatar
Quentin Gallouédec committed
253
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
277

278
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
279
        log_sigmas = np.log(sigmas)
280
        if self.config.use_karras_sigmas:
281
            sigmas = np.flip(sigmas).copy()
282
283
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
284
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
285
        elif self.config.use_exponential_sigmas:
286
287
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
288
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
289
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
290
        elif self.config.use_beta_sigmas:
291
292
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
293
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
294
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
295
296
297
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
298
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
299
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
300
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
301
302
303
304
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
305

306
307
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
308
309
310

        self.num_inference_steps = len(timesteps)

311
312
313
314
315
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

316
317
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
318
        self._begin_index = None
319
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
320

321
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
322
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
323
        """
324
325
        Apply dynamic thresholding to the predicted sample.

326
327
328
329
330
331
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
332
        https://huggingface.co/papers/2205.11487
333
334
335
336
337
338
339
340

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
341
342
        """
        dtype = sample.dtype
343
        batch_size, channels, *remaining_dims = sample.shape
344
345
346
347
348

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
349
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
350
351
352
353
354
355
356
357
358
359

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

360
        sample = sample.reshape(batch_size, channels, *remaining_dims)
361
362
363
        sample = sample.to(dtype)

        return sample
364

365
366
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
367
368
369
370
371
372
373
374
375
376
377
378
379
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
380
        # get log sigma
381
        log_sigma = np.log(np.maximum(sigma, 1e-10))
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
404
405
406
407
408
409
410
411
412
413
414
        """
        Convert sigma values to alpha_t and sigma_t values.

        Args:
            sigma (`torch.Tensor`):
                The sigma value(s) to convert.

        Returns:
            `Tuple[torch.Tensor, torch.Tensor]`:
                A tuple containing (alpha_t, sigma_t) values.
        """
415
416
417
418
419
420
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
421
422
423
424

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
425
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        """
        Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
        Models](https://huggingface.co/papers/2206.00364).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following the Karras noise schedule.
        """
440

Suraj Patil's avatar
Suraj Patil committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
455
456
457
458
459
460
461
462

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

463
464
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
465
466
467
468
469
470
471
472
473
474
475
476
477
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

494
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
495
496
        return sigmas

497
498
499
500
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

535
        sigmas = np.array(
536
537
538
539
540
541
542
543
544
545
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

546
    def convert_model_output(
547
        self,
548
        model_output: torch.Tensor,
549
        *args,
550
        sample: torch.Tensor = None,
551
        **kwargs,
552
    ) -> torch.Tensor:
553
        """
554
        Convert the model output to the corresponding type the DEIS algorithm needs.
555
556

        Args:
557
            model_output (`torch.Tensor`):
558
559
560
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
561
            sample (`torch.Tensor`):
562
                A current instance of a sample created by the diffusion process.
563
564

        Returns:
565
            `torch.Tensor`:
566
                The converted model output.
567
        """
568
569
570
571
572
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
573
                raise ValueError("missing `sample` as a required keyword argument")
574
575
576
577
578
579
580
581
582
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
583
584
585
586
587
588
        if self.config.prediction_type == "epsilon":
            x0_pred = (sample - sigma_t * model_output) / alpha_t
        elif self.config.prediction_type == "sample":
            x0_pred = model_output
        elif self.config.prediction_type == "v_prediction":
            x0_pred = alpha_t * sample - sigma_t * model_output
589
590
591
        elif self.config.prediction_type == "flow_prediction":
            sigma_t = self.sigmas[self.step_index]
            x0_pred = sample - sigma_t * model_output
592
593
        else:
            raise ValueError(
594
595
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                "`v_prediction`, or `flow_prediction` for the DEISMultistepScheduler."
596
597
598
            )

        if self.config.thresholding:
599
            x0_pred = self._threshold_sample(x0_pred)
600
601
602
603
604
605
606
607

        if self.config.algorithm_type == "deis":
            return (sample - alpha_t * x0_pred) / sigma_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def deis_first_order_update(
        self,
608
        model_output: torch.Tensor,
609
        *args,
610
        sample: torch.Tensor = None,
611
        **kwargs,
612
    ) -> torch.Tensor:
613
614
615
616
        """
        One step for the first-order DEIS (equivalent to DDIM).

        Args:
617
            model_output (`torch.Tensor`):
618
619
620
621
622
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
623
            sample (`torch.Tensor`):
624
                A current instance of a sample created by the diffusion process.
625
626

        Returns:
627
            `torch.Tensor`:
628
                The sample tensor at the previous timestep.
629
        """
630
631
632
633
634
635
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
636
                raise ValueError("missing `sample` as a required keyword argument")
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

657
658
659
660
661
662
663
664
665
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "deis":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        else:
            raise NotImplementedError("only support log-rho multistep deis now")
        return x_t

    def multistep_deis_second_order_update(
        self,
666
        model_output_list: List[torch.Tensor],
667
        *args,
668
        sample: torch.Tensor = None,
669
        **kwargs,
670
    ) -> torch.Tensor:
671
672
673
674
        """
        One step for the second-order multistep DEIS.

        Args:
675
            model_output_list (`List[torch.Tensor]`):
676
                The direct outputs from learned diffusion model at current and latter timesteps.
677
            sample (`torch.Tensor`):
678
                A current instance of a sample created by the diffusion process.
679
680

        Returns:
681
            `torch.Tensor`:
682
                The sample tensor at the previous timestep.
683
        """
684
685
686
687
688
689
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
690
                raise ValueError("missing `sample` as a required keyword argument")
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        m0, m1 = model_output_list[-1], model_output_list[-2]

        rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c):
                # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}]
                return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c))

            coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1)
            coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1)
            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def multistep_deis_third_order_update(
        self,
735
        model_output_list: List[torch.Tensor],
736
        *args,
737
        sample: torch.Tensor = None,
738
        **kwargs,
739
    ) -> torch.Tensor:
740
741
742
743
        """
        One step for the third-order multistep DEIS.

        Args:
744
            model_output_list (`List[torch.Tensor]`):
745
                The direct outputs from learned diffusion model at current and latter timesteps.
746
            sample (`torch.Tensor`):
747
                A current instance of a sample created by diffusion process.
748
749

        Returns:
750
            `torch.Tensor`:
751
                The sample tensor at the previous timestep.
752
        """
753
754
755
756
757
758
759

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
760
                raise ValueError("missing `sample` as a required keyword argument")
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

787
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
788

789
790
791
792
        rho_t, rho_s0, rho_s1, rho_s2 = (
            sigma_t / alpha_t,
            sigma_s0 / alpha_s0,
            sigma_s1 / alpha_s1,
793
            sigma_s2 / alpha_s2,
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        )

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c, d):
                # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}]
                numerator = t * (
                    np.log(c) * (np.log(d) - np.log(t) + 1)
                    - np.log(d) * np.log(t)
                    + np.log(d)
                    + np.log(t) ** 2
                    - 2 * np.log(t)
                    + 2
                )
                denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d))
                return numerator / denominator

            coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2)
            coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0)
            coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2)

            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

821
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
    def index_for_timestep(
        self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index for a given timestep in the schedule.

        Args:
            timestep (`int` or `torch.Tensor`):
                The timestep for which to find the index.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule.
        """
838
839
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
840

841
        index_candidates = (schedule_timesteps == timestep).nonzero()
842
843
844
845
846
847
848
849
850
851
852
853

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

854
855
856
857
858
859
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
860
861
862
863

        Args:
            timestep (`int` or `torch.Tensor`):
                The current timestep for which to initialize the step index.
864
865
866
867
868
869
870
871
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
872

873
874
    def step(
        self,
875
        model_output: torch.Tensor,
876
        timestep: Union[int, torch.Tensor],
877
        sample: torch.Tensor,
878
879
880
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
881
882
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DEIS.
883
884

        Args:
885
            model_output (`torch.Tensor`):
886
                The direct output from learned diffusion model.
887
            timestep (`int`):
888
                The current discrete timestep in the diffusion chain.
889
            sample (`torch.Tensor`):
890
891
892
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
893
894

        Returns:
895
896
897
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
898
899
900
901
902
903
904

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

905
906
907
        if self.step_index is None:
            self._init_step_index(timestep)

908
        lower_order_final = (
909
            (self.step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
910
911
        )
        lower_order_second = (
912
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
913
914
        )

915
        model_output = self.convert_model_output(model_output, sample=sample)
916
917
918
919
920
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
921
            prev_sample = self.deis_first_order_update(model_output, sample=sample)
922
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
923
            prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample)
924
        else:
925
            prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample)
926
927
928
929

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

930
931
932
        # upon completion increase step index by one
        self._step_index += 1

933
934
935
936
937
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

938
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
939
940
941
942
943
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
944
            sample (`torch.Tensor`):
945
                The input sample.
946
947

        Returns:
948
            `torch.Tensor`:
949
                A scaled input sample.
950
951
952
        """
        return sample

953
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
954
955
    def add_noise(
        self,
956
957
        original_samples: torch.Tensor,
        noise: torch.Tensor,
958
        timesteps: torch.IntTensor,
959
    ) -> torch.Tensor:
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples without noise.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps at which to add noise to the samples.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
975
976
977
978
979
980
981
982
983
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
984

985
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
986
987
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
988
989
990
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
991
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
992
            # add noise is called before first denoising step to create initial latent(img2img)
993
            step_indices = [self.begin_index] * timesteps.shape[0]
994

995
996
997
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
998

999
1000
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1001
1002
1003
1004
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps