scheduling_deis_multistep.py 37.9 KB
Newer Older
1
# Copyright 2024 FLAIR Lab and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: check https://arxiv.org/abs/2204.13902 and https://github.com/qsh-zh/deis for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
34
35
36
37
38
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
57
    if alpha_transform_type == "cosine":
58

YiYi Xu's avatar
YiYi Xu committed
59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
78
79
    return torch.tensor(betas, dtype=torch.float32)


class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
80
    `DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
81

82
83
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
84
85

    Args:
86
87
88
89
90
91
92
93
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
94
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        algorithm_type (`str`, defaults to `deis`):
            The algorithm type for the solver.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
115
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
116
117
             Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
             the sigmas are determined according to a sequence of noise levels {σi}.
118
119
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
120
121
122
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
123
124
125
126
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
127
            An offset added to the inference steps, as required by some model families.
128
129
    """

Kashif Rasul's avatar
Kashif Rasul committed
130
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "deis",
        solver_type: str = "logrho",
        lower_order_final: bool = True,
149
        use_karras_sigmas: Optional[bool] = False,
150
        use_exponential_sigmas: Optional[bool] = False,
151
        use_beta_sigmas: Optional[bool] = False,
152
153
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
154
    ):
155
156
157
158
159
160
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
161
162
163
164
165
166
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
167
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
168
169
170
171
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
172
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
173
174
175
176
177
178
179

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
180
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
181
182
183
184
185
186
187

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DEIS
        if algorithm_type not in ["deis"]:
            if algorithm_type in ["dpmsolver", "dpmsolver++"]:
188
                self.register_to_config(algorithm_type="deis")
189
            else:
190
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
191
192

        if solver_type not in ["logrho"]:
193
            if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
194
                self.register_to_config(solver_type="logrho")
195
            else:
196
                raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
197
198
199
200
201
202
203

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
204
        self._step_index = None
205
        self._begin_index = None
206
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
207
208
209
210

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
211
        The index counter for current timestep. It will increase 1 after each scheduler step.
212
213
        """
        return self._step_index
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

233
234
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
235
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
236
237
238

        Args:
            num_inference_steps (`int`):
239
240
241
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
242
        """
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
267

268
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
269
        log_sigmas = np.log(sigmas)
270
        if self.config.use_karras_sigmas:
271
            sigmas = np.flip(sigmas).copy()
272
273
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
274
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
275
        elif self.config.use_exponential_sigmas:
276
277
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
278
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
279
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
280
        elif self.config.use_beta_sigmas:
281
282
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
283
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
284
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
285
286
287
288
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
289

290
291
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
292
293
294

        self.num_inference_steps = len(timesteps)

295
296
297
298
299
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

300
301
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
302
        self._begin_index = None
303
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
304

305
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
306
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
307
308
309
310
311
312
313
314
315
316
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
317
        batch_size, channels, *remaining_dims = sample.shape
318
319
320
321
322

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
323
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
324
325
326
327
328
329
330
331
332
333

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

334
        sample = sample.reshape(batch_size, channels, *remaining_dims)
335
336
337
        sample = sample.to(dtype)

        return sample
338

339
340
341
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
342
        log_sigma = np.log(np.maximum(sigma, 1e-10))
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
371
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
372
373
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
388
389
390
391
392
393
394
395

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

415
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
416
417
        return sigmas

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

439
        sigmas = np.array(
440
441
442
443
444
445
446
447
448
449
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

450
    def convert_model_output(
451
        self,
452
        model_output: torch.Tensor,
453
        *args,
454
        sample: torch.Tensor = None,
455
        **kwargs,
456
    ) -> torch.Tensor:
457
        """
458
        Convert the model output to the corresponding type the DEIS algorithm needs.
459
460

        Args:
461
            model_output (`torch.Tensor`):
462
463
464
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
465
            sample (`torch.Tensor`):
466
                A current instance of a sample created by the diffusion process.
467
468

        Returns:
469
            `torch.Tensor`:
470
                The converted model output.
471
        """
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
487
488
489
490
491
492
493
494
495
496
497
498
499
        if self.config.prediction_type == "epsilon":
            x0_pred = (sample - sigma_t * model_output) / alpha_t
        elif self.config.prediction_type == "sample":
            x0_pred = model_output
        elif self.config.prediction_type == "v_prediction":
            x0_pred = alpha_t * sample - sigma_t * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction` for the DEISMultistepScheduler."
            )

        if self.config.thresholding:
500
            x0_pred = self._threshold_sample(x0_pred)
501
502
503
504
505
506
507
508

        if self.config.algorithm_type == "deis":
            return (sample - alpha_t * x0_pred) / sigma_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def deis_first_order_update(
        self,
509
        model_output: torch.Tensor,
510
        *args,
511
        sample: torch.Tensor = None,
512
        **kwargs,
513
    ) -> torch.Tensor:
514
515
516
517
        """
        One step for the first-order DEIS (equivalent to DDIM).

        Args:
518
            model_output (`torch.Tensor`):
519
520
521
522
523
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
524
            sample (`torch.Tensor`):
525
                A current instance of a sample created by the diffusion process.
526
527

        Returns:
528
            `torch.Tensor`:
529
                The sample tensor at the previous timestep.
530
        """
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

558
559
560
561
562
563
564
565
566
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "deis":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        else:
            raise NotImplementedError("only support log-rho multistep deis now")
        return x_t

    def multistep_deis_second_order_update(
        self,
567
        model_output_list: List[torch.Tensor],
568
        *args,
569
        sample: torch.Tensor = None,
570
        **kwargs,
571
    ) -> torch.Tensor:
572
573
574
575
        """
        One step for the second-order multistep DEIS.

        Args:
576
            model_output_list (`List[torch.Tensor]`):
577
                The direct outputs from learned diffusion model at current and latter timesteps.
578
            sample (`torch.Tensor`):
579
                A current instance of a sample created by the diffusion process.
580
581

        Returns:
582
            `torch.Tensor`:
583
                The sample tensor at the previous timestep.
584
        """
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
        m0, m1 = model_output_list[-1], model_output_list[-2]

        rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c):
                # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}]
                return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c))

            coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1)
            coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1)
            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def multistep_deis_third_order_update(
        self,
636
        model_output_list: List[torch.Tensor],
637
        *args,
638
        sample: torch.Tensor = None,
639
        **kwargs,
640
    ) -> torch.Tensor:
641
642
643
644
        """
        One step for the third-order multistep DEIS.

        Args:
645
            model_output_list (`List[torch.Tensor]`):
646
                The direct outputs from learned diffusion model at current and latter timesteps.
647
            sample (`torch.Tensor`):
648
                A current instance of a sample created by diffusion process.
649
650

        Returns:
651
            `torch.Tensor`:
652
                The sample tensor at the previous timestep.
653
        """
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

688
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
689

690
691
692
693
        rho_t, rho_s0, rho_s1, rho_s2 = (
            sigma_t / alpha_t,
            sigma_s0 / alpha_s0,
            sigma_s1 / alpha_s1,
694
            sigma_s2 / alpha_s2,
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        )

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c, d):
                # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}]
                numerator = t * (
                    np.log(c) * (np.log(d) - np.log(t) + 1)
                    - np.log(d) * np.log(t)
                    + np.log(d)
                    + np.log(t) ** 2
                    - 2 * np.log(t)
                    + 2
                )
                denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d))
                return numerator / denominator

            coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2)
            coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0)
            coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2)

            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

722
723
724
725
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
726

727
        index_candidates = (schedule_timesteps == timestep).nonzero()
728
729
730
731
732
733
734
735
736
737
738
739

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

740
741
742
743
744
745
746
747
748
749
750
751
752
753
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
754

755
756
    def step(
        self,
757
        model_output: torch.Tensor,
758
        timestep: Union[int, torch.Tensor],
759
        sample: torch.Tensor,
760
761
762
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
763
764
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DEIS.
765
766

        Args:
767
            model_output (`torch.Tensor`):
768
                The direct output from learned diffusion model.
769
            timestep (`int`):
770
                The current discrete timestep in the diffusion chain.
771
            sample (`torch.Tensor`):
772
773
774
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
775
776

        Returns:
777
778
779
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
780
781
782
783
784
785
786

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

787
788
789
        if self.step_index is None:
            self._init_step_index(timestep)

790
        lower_order_final = (
791
            (self.step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
792
793
        )
        lower_order_second = (
794
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
795
796
        )

797
        model_output = self.convert_model_output(model_output, sample=sample)
798
799
800
801
802
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
803
            prev_sample = self.deis_first_order_update(model_output, sample=sample)
804
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
805
            prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample)
806
        else:
807
            prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample)
808
809
810
811

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

812
813
814
        # upon completion increase step index by one
        self._step_index += 1

815
816
817
818
819
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

820
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
821
822
823
824
825
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
826
            sample (`torch.Tensor`):
827
                The input sample.
828
829

        Returns:
830
            `torch.Tensor`:
831
                A scaled input sample.
832
833
834
        """
        return sample

835
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
836
837
    def add_noise(
        self,
838
839
        original_samples: torch.Tensor,
        noise: torch.Tensor,
840
        timesteps: torch.IntTensor,
841
    ) -> torch.Tensor:
842
843
844
845
846
847
848
849
850
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
851

852
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
853
854
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
855
856
857
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
858
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
859
            # add noise is called before first denoising step to create initial latent(img2img)
860
            step_indices = [self.begin_index] * timesteps.shape[0]
861

862
863
864
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
865

866
867
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
868
869
870
871
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps