scheduling_deis_multistep.py 34 KB
Newer Older
1
# Copyright 2024 FLAIR Lab and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: check https://arxiv.org/abs/2204.13902 and https://github.com/qsh-zh/deis for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
30
31
32
33
34
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
35
36
37
38
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
47
48
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
49
50
51
52

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
53
    if alpha_transform_type == "cosine":
54

YiYi Xu's avatar
YiYi Xu committed
55
56
57
58
59
60
61
62
63
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
64
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
65
66
67
68
69

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
70
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
71
72
73
74
75
    return torch.tensor(betas, dtype=torch.float32)


class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
76
    `DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
77

78
79
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
80
81

    Args:
82
83
84
85
86
87
88
89
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
90
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DEIS order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        algorithm_type (`str`, defaults to `deis`):
            The algorithm type for the solver.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps.
111
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
112
113
114
115
116
117
             Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
             the sigmas are determined according to a sequence of noise levels {σi}.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
118
            An offset added to the inference steps, as required by some model families.
119
120
    """

Kashif Rasul's avatar
Kashif Rasul committed
121
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "deis",
        solver_type: str = "logrho",
        lower_order_final: bool = True,
140
        use_karras_sigmas: Optional[bool] = False,
141
142
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
143
144
145
146
147
148
149
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
150
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
151
152
153
154
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
155
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
156
157
158
159
160
161
162

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
163
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
164
165
166
167
168
169
170

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DEIS
        if algorithm_type not in ["deis"]:
            if algorithm_type in ["dpmsolver", "dpmsolver++"]:
171
                self.register_to_config(algorithm_type="deis")
172
            else:
173
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
174
175

        if solver_type not in ["logrho"]:
176
            if solver_type in ["midpoint", "heun", "bh1", "bh2"]:
177
                self.register_to_config(solver_type="logrho")
178
            else:
179
                raise NotImplementedError(f"solver type {solver_type} is not implemented for {self.__class__}")
180
181
182
183
184
185
186

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
187
        self._step_index = None
188
        self._begin_index = None
189
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
190
191
192
193

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
194
        The index counter for current timestep. It will increase 1 after each scheduler step.
195
196
        """
        return self._step_index
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

216
217
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
218
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
219
220
221

        Args:
            num_inference_steps (`int`):
222
223
224
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
225
        """
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
250

251
252
253
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
254
            sigmas = np.flip(sigmas).copy()
255
256
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
257
258
259
260
261
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
262

263
264
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
265
266
267

        self.num_inference_steps = len(timesteps)

268
269
270
271
272
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

273
274
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
275
        self._begin_index = None
276
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
277

278
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
279
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
280
281
282
283
284
285
286
287
288
289
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
290
        batch_size, channels, *remaining_dims = sample.shape
291
292
293
294
295

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
296
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
297
298
299
300
301
302
303
304
305
306

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

307
        sample = sample.reshape(batch_size, channels, *remaining_dims)
308
309
310
        sample = sample.to(dtype)

        return sample
311

312
313
314
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
315
        log_sigma = np.log(np.maximum(sigma, 1e-10))
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
344
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
345
346
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
361
362
363
364
365
366
367
368

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

369
    def convert_model_output(
370
        self,
371
        model_output: torch.Tensor,
372
        *args,
373
        sample: torch.Tensor = None,
374
        **kwargs,
375
    ) -> torch.Tensor:
376
        """
377
        Convert the model output to the corresponding type the DEIS algorithm needs.
378
379

        Args:
380
            model_output (`torch.Tensor`):
381
382
383
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
384
            sample (`torch.Tensor`):
385
                A current instance of a sample created by the diffusion process.
386
387

        Returns:
388
            `torch.Tensor`:
389
                The converted model output.
390
        """
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
406
407
408
409
410
411
412
413
414
415
416
417
418
        if self.config.prediction_type == "epsilon":
            x0_pred = (sample - sigma_t * model_output) / alpha_t
        elif self.config.prediction_type == "sample":
            x0_pred = model_output
        elif self.config.prediction_type == "v_prediction":
            x0_pred = alpha_t * sample - sigma_t * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction` for the DEISMultistepScheduler."
            )

        if self.config.thresholding:
419
            x0_pred = self._threshold_sample(x0_pred)
420
421
422
423
424
425
426
427

        if self.config.algorithm_type == "deis":
            return (sample - alpha_t * x0_pred) / sigma_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def deis_first_order_update(
        self,
428
        model_output: torch.Tensor,
429
        *args,
430
        sample: torch.Tensor = None,
431
        **kwargs,
432
    ) -> torch.Tensor:
433
434
435
436
        """
        One step for the first-order DEIS (equivalent to DDIM).

        Args:
437
            model_output (`torch.Tensor`):
438
439
440
441
442
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
443
            sample (`torch.Tensor`):
444
                A current instance of a sample created by the diffusion process.
445
446

        Returns:
447
            `torch.Tensor`:
448
                The sample tensor at the previous timestep.
449
        """
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

477
478
479
480
481
482
483
484
485
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "deis":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        else:
            raise NotImplementedError("only support log-rho multistep deis now")
        return x_t

    def multistep_deis_second_order_update(
        self,
486
        model_output_list: List[torch.Tensor],
487
        *args,
488
        sample: torch.Tensor = None,
489
        **kwargs,
490
    ) -> torch.Tensor:
491
492
493
494
        """
        One step for the second-order multistep DEIS.

        Args:
495
            model_output_list (`List[torch.Tensor]`):
496
                The direct outputs from learned diffusion model at current and latter timesteps.
497
            sample (`torch.Tensor`):
498
                A current instance of a sample created by the diffusion process.
499
500

        Returns:
501
            `torch.Tensor`:
502
                The sample tensor at the previous timestep.
503
        """
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        m0, m1 = model_output_list[-1], model_output_list[-2]

        rho_t, rho_s0, rho_s1 = sigma_t / alpha_t, sigma_s0 / alpha_s0, sigma_s1 / alpha_s1

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c):
                # Integrate[(log(t) - log(c)) / (log(b) - log(c)), {t}]
                return t * (-np.log(c) + np.log(t) - 1) / (np.log(b) - np.log(c))

            coef1 = ind_fn(rho_t, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s0, rho_s1)
            coef2 = ind_fn(rho_t, rho_s1, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s0)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1)
            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

    def multistep_deis_third_order_update(
        self,
555
        model_output_list: List[torch.Tensor],
556
        *args,
557
        sample: torch.Tensor = None,
558
        **kwargs,
559
    ) -> torch.Tensor:
560
561
562
563
        """
        One step for the third-order multistep DEIS.

        Args:
564
            model_output_list (`List[torch.Tensor]`):
565
                The direct outputs from learned diffusion model at current and latter timesteps.
566
            sample (`torch.Tensor`):
567
                A current instance of a sample created by diffusion process.
568
569

        Returns:
570
            `torch.Tensor`:
571
                The sample tensor at the previous timestep.
572
        """
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

607
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
608

609
610
611
612
        rho_t, rho_s0, rho_s1, rho_s2 = (
            sigma_t / alpha_t,
            sigma_s0 / alpha_s0,
            sigma_s1 / alpha_s1,
613
            sigma_s2 / alpha_s2,
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        )

        if self.config.algorithm_type == "deis":

            def ind_fn(t, b, c, d):
                # Integrate[(log(t) - log(c))(log(t) - log(d)) / (log(b) - log(c))(log(b) - log(d)), {t}]
                numerator = t * (
                    np.log(c) * (np.log(d) - np.log(t) + 1)
                    - np.log(d) * np.log(t)
                    + np.log(d)
                    + np.log(t) ** 2
                    - 2 * np.log(t)
                    + 2
                )
                denominator = (np.log(b) - np.log(c)) * (np.log(b) - np.log(d))
                return numerator / denominator

            coef1 = ind_fn(rho_t, rho_s0, rho_s1, rho_s2) - ind_fn(rho_s0, rho_s0, rho_s1, rho_s2)
            coef2 = ind_fn(rho_t, rho_s1, rho_s2, rho_s0) - ind_fn(rho_s0, rho_s1, rho_s2, rho_s0)
            coef3 = ind_fn(rho_t, rho_s2, rho_s0, rho_s1) - ind_fn(rho_s0, rho_s2, rho_s0, rho_s1)

            x_t = alpha_t * (sample / alpha_s0 + coef1 * m0 + coef2 * m1 + coef3 * m2)

            return x_t
        else:
            raise NotImplementedError("only support log-rho multistep deis now")

641
642
643
644
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
645

646
        index_candidates = (schedule_timesteps == timestep).nonzero()
647
648
649
650
651
652
653
654
655
656
657
658

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

659
660
661
662
663
664
665
666
667
668
669
670
671
672
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
673

674
675
    def step(
        self,
676
        model_output: torch.Tensor,
677
        timestep: Union[int, torch.Tensor],
678
        sample: torch.Tensor,
679
680
681
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
682
683
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DEIS.
684
685

        Args:
686
            model_output (`torch.Tensor`):
687
                The direct output from learned diffusion model.
688
            timestep (`int`):
689
                The current discrete timestep in the diffusion chain.
690
            sample (`torch.Tensor`):
691
692
693
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
694
695

        Returns:
696
697
698
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
699
700
701
702
703
704
705

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

706
707
708
        if self.step_index is None:
            self._init_step_index(timestep)

709
        lower_order_final = (
710
            (self.step_index == len(self.timesteps) - 1) and self.config.lower_order_final and len(self.timesteps) < 15
711
712
        )
        lower_order_second = (
713
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
714
715
        )

716
        model_output = self.convert_model_output(model_output, sample=sample)
717
718
719
720
721
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
722
            prev_sample = self.deis_first_order_update(model_output, sample=sample)
723
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
724
            prev_sample = self.multistep_deis_second_order_update(self.model_outputs, sample=sample)
725
        else:
726
            prev_sample = self.multistep_deis_third_order_update(self.model_outputs, sample=sample)
727
728
729
730

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

731
732
733
        # upon completion increase step index by one
        self._step_index += 1

734
735
736
737
738
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

739
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
740
741
742
743
744
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
745
            sample (`torch.Tensor`):
746
                The input sample.
747
748

        Returns:
749
            `torch.Tensor`:
750
                A scaled input sample.
751
752
753
        """
        return sample

754
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
755
756
    def add_noise(
        self,
757
758
        original_samples: torch.Tensor,
        noise: torch.Tensor,
759
        timesteps: torch.IntTensor,
760
    ) -> torch.Tensor:
761
762
763
764
765
766
767
768
769
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
770

771
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
772
773
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
774
775
776
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
777
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
778
            # add noise is called before first denoising step to create initial latent(img2img)
779
            step_indices = [self.begin_index] * timesteps.shape[0]
780

781
782
783
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
784

785
786
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
787
788
789
790
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps