test_alt_diffusion.py 9.39 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25
26
27

from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
Dhruv Nair's avatar
Dhruv Nair committed
28
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
Suraj Patil's avatar
Suraj Patil committed
29

30
31
32
33
34
35
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
36
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
37
38


39
enable_full_determinism()
Suraj Patil's avatar
Suraj Patil committed
40
41


42
43
44
class AltDiffusionPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
45
    pipeline_class = AltDiffusionPipeline
46
47
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
48
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
49
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
50
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
Suraj Patil's avatar
Suraj Patil committed
51

52
    def get_dummy_components(self):
Suraj Patil's avatar
Suraj Patil committed
53
        torch.manual_seed(0)
54
        unet = UNet2DConditionModel(
Suraj Patil's avatar
Suraj Patil committed
55
56
57
58
59
60
61
62
63
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
64
65
66
67
68
69
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
Suraj Patil's avatar
Suraj Patil committed
70
71
        )
        torch.manual_seed(0)
72
        vae = AutoencoderKL(
Suraj Patil's avatar
Suraj Patil committed
73
74
75
76
77
78
79
80
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

81
82
83
84
85
86
87
88
89
90
91
92
93
        # TODO: address the non-deterministic text encoder (fails for save-load tests)
        # torch.manual_seed(0)
        # text_encoder_config = RobertaSeriesConfig(
        #     hidden_size=32,
        #     project_dim=32,
        #     intermediate_size=37,
        #     layer_norm_eps=1e-05,
        #     num_attention_heads=4,
        #     num_hidden_layers=5,
        #     vocab_size=5002,
        # )
        # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)

Suraj Patil's avatar
Suraj Patil committed
94
        torch.manual_seed(0)
95
96
97
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
Suraj Patil's avatar
Suraj Patil committed
98
            hidden_size=32,
99
            projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
100
101
102
103
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
104
            pad_token_id=1,
Suraj Patil's avatar
Suraj Patil committed
105
106
            vocab_size=5002,
        )
107
        text_encoder = CLIPTextModel(text_encoder_config)
Suraj Patil's avatar
Suraj Patil committed
108

109
110
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77
Suraj Patil's avatar
Suraj Patil committed
111

112
113
114
115
116
117
118
119
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
120
            "image_encoder": None,
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
Suraj Patil's avatar
Suraj Patil committed
137

138
139
140
141
142
143
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

Suraj Patil's avatar
Suraj Patil committed
144
145
146
    def test_alt_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

147
148
149
150
151
152
153
154
155
156
        components = self.get_dummy_components()
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
157
        )
158
159
160
161
162
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder

        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
163
164
165
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

166
167
168
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = "A photo of an astronaut"
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
169
170
171
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

172
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
        expected_slice = np.array(
            [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
        )
Suraj Patil's avatar
Suraj Patil committed
176
177
178
179
180
181

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

182
183
184
185
186
187
188
189
190
191
192
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
193
        )
194
195
196
197
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder
        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
198
199
200
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

201
202
        inputs = self.get_dummy_inputs(device)
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
203
204
205
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

206
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209
        expected_slice = np.array(
            [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
        )
210

Suraj Patil's avatar
Suraj Patil committed
211
212
213
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


Dhruv Nair's avatar
Dhruv Nair committed
214
@nightly
Suraj Patil's avatar
Suraj Patil committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_alt_diffusion(self):
        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
230
231
        generator = torch.manual_seed(0)
        output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
Suraj Patil's avatar
Suraj Patil committed
232
233
234
235
236
237

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
238
239
        expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])

Suraj Patil's avatar
Suraj Patil committed
240
241
242
243
244
245
246
247
248
249
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_fast_ddim(self):
        scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")

        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
250
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
251

252
        output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
Suraj Patil's avatar
Suraj Patil committed
253
254
255
256
257
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
258
        expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
Suraj Patil's avatar
Suraj Patil committed
259

260
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2