test_alt_diffusion.py 9.27 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25
26
27

from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
Dhruv Nair's avatar
Dhruv Nair committed
28
from diffusers.utils import nightly, torch_device
29
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
30

31
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
32
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
33
34


35
enable_full_determinism()
Suraj Patil's avatar
Suraj Patil committed
36
37


38
39
40
class AltDiffusionPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
41
    pipeline_class = AltDiffusionPipeline
42
43
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
44
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
45
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
Suraj Patil's avatar
Suraj Patil committed
46

47
    def get_dummy_components(self):
Suraj Patil's avatar
Suraj Patil committed
48
        torch.manual_seed(0)
49
        unet = UNet2DConditionModel(
Suraj Patil's avatar
Suraj Patil committed
50
51
52
53
54
55
56
57
58
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
59
60
61
62
63
64
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
Suraj Patil's avatar
Suraj Patil committed
65
66
        )
        torch.manual_seed(0)
67
        vae = AutoencoderKL(
Suraj Patil's avatar
Suraj Patil committed
68
69
70
71
72
73
74
75
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

76
77
78
79
80
81
82
83
84
85
86
87
88
        # TODO: address the non-deterministic text encoder (fails for save-load tests)
        # torch.manual_seed(0)
        # text_encoder_config = RobertaSeriesConfig(
        #     hidden_size=32,
        #     project_dim=32,
        #     intermediate_size=37,
        #     layer_norm_eps=1e-05,
        #     num_attention_heads=4,
        #     num_hidden_layers=5,
        #     vocab_size=5002,
        # )
        # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)

Suraj Patil's avatar
Suraj Patil committed
89
        torch.manual_seed(0)
90
91
92
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
Suraj Patil's avatar
Suraj Patil committed
93
            hidden_size=32,
94
            projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
95
96
97
98
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
99
            pad_token_id=1,
Suraj Patil's avatar
Suraj Patil committed
100
101
            vocab_size=5002,
        )
102
        text_encoder = CLIPTextModel(text_encoder_config)
Suraj Patil's avatar
Suraj Patil committed
103

104
105
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77
Suraj Patil's avatar
Suraj Patil committed
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
Suraj Patil's avatar
Suraj Patil committed
131

132
133
134
135
136
137
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

Suraj Patil's avatar
Suraj Patil committed
138
139
140
    def test_alt_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

141
142
143
144
145
146
147
148
149
150
        components = self.get_dummy_components()
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
151
        )
152
153
154
155
156
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder

        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
157
158
159
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

160
161
162
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = "A photo of an astronaut"
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
163
164
165
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

166
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
        expected_slice = np.array(
            [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
        )
Suraj Patil's avatar
Suraj Patil committed
170
171
172
173
174
175

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

176
177
178
179
180
181
182
183
184
185
186
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
187
        )
188
189
190
191
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder
        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
192
193
194
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

195
196
        inputs = self.get_dummy_inputs(device)
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
197
198
199
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

200
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
        expected_slice = np.array(
            [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
        )
204

Suraj Patil's avatar
Suraj Patil committed
205
206
207
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


Dhruv Nair's avatar
Dhruv Nair committed
208
@nightly
Suraj Patil's avatar
Suraj Patil committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_alt_diffusion(self):
        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
224
225
        generator = torch.manual_seed(0)
        output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
Suraj Patil's avatar
Suraj Patil committed
226
227
228
229
230
231

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
232
233
        expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])

Suraj Patil's avatar
Suraj Patil committed
234
235
236
237
238
239
240
241
242
243
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_fast_ddim(self):
        scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")

        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
244
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
245

246
        output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
Suraj Patil's avatar
Suraj Patil committed
247
248
249
250
251
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
252
        expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
Suraj Patil's avatar
Suraj Patil committed
253

254
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2