test_alt_diffusion.py 9.35 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25
26
27

from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
Dhruv Nair's avatar
Dhruv Nair committed
28
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
Suraj Patil's avatar
Suraj Patil committed
29

30
31
32
33
34
35
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
36
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
37
38


39
enable_full_determinism()
Suraj Patil's avatar
Suraj Patil committed
40
41


42
43
44
class AltDiffusionPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
45
    pipeline_class = AltDiffusionPipeline
46
47
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
48
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
49
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
50
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
Suraj Patil's avatar
Suraj Patil committed
51

52
    def get_dummy_components(self):
Suraj Patil's avatar
Suraj Patil committed
53
        torch.manual_seed(0)
54
        unet = UNet2DConditionModel(
Suraj Patil's avatar
Suraj Patil committed
55
56
57
58
59
60
61
62
63
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
64
65
66
67
68
69
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
Suraj Patil's avatar
Suraj Patil committed
70
71
        )
        torch.manual_seed(0)
72
        vae = AutoencoderKL(
Suraj Patil's avatar
Suraj Patil committed
73
74
75
76
77
78
79
80
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

81
82
83
84
85
86
87
88
89
90
91
92
93
        # TODO: address the non-deterministic text encoder (fails for save-load tests)
        # torch.manual_seed(0)
        # text_encoder_config = RobertaSeriesConfig(
        #     hidden_size=32,
        #     project_dim=32,
        #     intermediate_size=37,
        #     layer_norm_eps=1e-05,
        #     num_attention_heads=4,
        #     num_hidden_layers=5,
        #     vocab_size=5002,
        # )
        # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)

Suraj Patil's avatar
Suraj Patil committed
94
        torch.manual_seed(0)
95
96
97
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
Suraj Patil's avatar
Suraj Patil committed
98
            hidden_size=32,
99
            projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
100
101
102
103
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
104
            pad_token_id=1,
Suraj Patil's avatar
Suraj Patil committed
105
106
            vocab_size=5002,
        )
107
        text_encoder = CLIPTextModel(text_encoder_config)
Suraj Patil's avatar
Suraj Patil committed
108

109
110
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77
Suraj Patil's avatar
Suraj Patil committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
Suraj Patil's avatar
Suraj Patil committed
136

137
138
139
140
141
142
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

Suraj Patil's avatar
Suraj Patil committed
143
144
145
    def test_alt_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

146
147
148
149
150
151
152
153
154
155
        components = self.get_dummy_components()
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
156
        )
157
158
159
160
161
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder

        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
162
163
164
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

165
166
167
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = "A photo of an astronaut"
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
168
169
170
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

171
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
        expected_slice = np.array(
            [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
        )
Suraj Patil's avatar
Suraj Patil committed
175
176
177
178
179
180

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

181
182
183
184
185
186
187
188
189
190
191
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
192
        )
193
194
195
196
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder
        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
197
198
199
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

200
201
        inputs = self.get_dummy_inputs(device)
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
202
203
204
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

205
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
        expected_slice = np.array(
            [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
        )
209

Suraj Patil's avatar
Suraj Patil committed
210
211
212
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


Dhruv Nair's avatar
Dhruv Nair committed
213
@nightly
Suraj Patil's avatar
Suraj Patil committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_alt_diffusion(self):
        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
229
230
        generator = torch.manual_seed(0)
        output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
Suraj Patil's avatar
Suraj Patil committed
231
232
233
234
235
236

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
237
238
        expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])

Suraj Patil's avatar
Suraj Patil committed
239
240
241
242
243
244
245
246
247
248
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_fast_ddim(self):
        scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")

        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
249
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
250

251
        output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
Suraj Patil's avatar
Suraj Patil committed
252
253
254
255
256
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
257
        expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
Suraj Patil's avatar
Suraj Patil committed
258

259
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2