test_alt_diffusion.py 9.19 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
22
23
24
25
26
27

from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
28
from diffusers.utils import slow, torch_device
29
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
30

31
32
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
33
34


35
enable_full_determinism()
Suraj Patil's avatar
Suraj Patil committed
36
37


38
class AltDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
39
    pipeline_class = AltDiffusionPipeline
40
41
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
42
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
43
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
Suraj Patil's avatar
Suraj Patil committed
44

45
    def get_dummy_components(self):
Suraj Patil's avatar
Suraj Patil committed
46
        torch.manual_seed(0)
47
        unet = UNet2DConditionModel(
Suraj Patil's avatar
Suraj Patil committed
48
49
50
51
52
53
54
55
56
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
57
58
59
60
61
62
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
Suraj Patil's avatar
Suraj Patil committed
63
64
        )
        torch.manual_seed(0)
65
        vae = AutoencoderKL(
Suraj Patil's avatar
Suraj Patil committed
66
67
68
69
70
71
72
73
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

74
75
76
77
78
79
80
81
82
83
84
85
86
        # TODO: address the non-deterministic text encoder (fails for save-load tests)
        # torch.manual_seed(0)
        # text_encoder_config = RobertaSeriesConfig(
        #     hidden_size=32,
        #     project_dim=32,
        #     intermediate_size=37,
        #     layer_norm_eps=1e-05,
        #     num_attention_heads=4,
        #     num_hidden_layers=5,
        #     vocab_size=5002,
        # )
        # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)

Suraj Patil's avatar
Suraj Patil committed
87
        torch.manual_seed(0)
88
89
90
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
Suraj Patil's avatar
Suraj Patil committed
91
            hidden_size=32,
92
            projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
93
94
95
96
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
97
            pad_token_id=1,
Suraj Patil's avatar
Suraj Patil committed
98
99
            vocab_size=5002,
        )
100
        text_encoder = CLIPTextModel(text_encoder_config)
Suraj Patil's avatar
Suraj Patil committed
101

102
103
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77
Suraj Patil's avatar
Suraj Patil committed
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
Suraj Patil's avatar
Suraj Patil committed
129

130
131
132
133
134
135
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

Suraj Patil's avatar
Suraj Patil committed
136
137
138
    def test_alt_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

139
140
141
142
143
144
145
146
147
148
        components = self.get_dummy_components()
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
149
        )
150
151
152
153
154
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder

        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
155
156
157
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

158
159
160
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = "A photo of an astronaut"
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
161
162
163
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

164
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
        expected_slice = np.array(
            [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
        )
Suraj Patil's avatar
Suraj Patil committed
168
169
170
171
172
173

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

174
175
176
177
178
179
180
181
182
183
184
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        text_encoder_config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=5002,
Suraj Patil's avatar
Suraj Patil committed
185
        )
186
187
188
189
        # TODO: remove after fixing the non-deterministic text encoder
        text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
        components["text_encoder"] = text_encoder
        alt_pipe = AltDiffusionPipeline(**components)
Suraj Patil's avatar
Suraj Patil committed
190
191
192
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

193
194
        inputs = self.get_dummy_inputs(device)
        output = alt_pipe(**inputs)
Suraj Patil's avatar
Suraj Patil committed
195
196
197
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

198
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
199
200
201
        expected_slice = np.array(
            [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
        )
202

Suraj Patil's avatar
Suraj Patil committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2


@slow
@require_torch_gpu
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_alt_diffusion(self):
        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
222
223
        generator = torch.manual_seed(0)
        output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
Suraj Patil's avatar
Suraj Patil committed
224
225
226
227
228
229

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
230
231
        expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])

Suraj Patil's avatar
Suraj Patil committed
232
233
234
235
236
237
238
239
240
241
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_alt_diffusion_fast_ddim(self):
        scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")

        alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
242
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
243

244
        output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
Suraj Patil's avatar
Suraj Patil committed
245
246
247
248
249
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
250
        expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
Suraj Patil's avatar
Suraj Patil committed
251

252
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2