pipeline_utils.py 100 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import fnmatch
18
19
20
import importlib
import inspect
import os
21
import re
22
import sys
23
import warnings
24
25
from dataclasses import dataclass
from pathlib import Path
26
from typing import Any, Callable, Dict, List, Optional, Union
27
28

import numpy as np
Anh71me's avatar
Anh71me committed
29
import PIL.Image
30
import torch
31
from huggingface_hub import ModelCard, create_repo, hf_hub_download, model_info, snapshot_download
32
from packaging import version
33
from requests.exceptions import HTTPError
34
35
from tqdm.auto import tqdm

36
from .. import __version__
37
38
39
40
41
from ..configuration_utils import ConfigMixin
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
42
    DEPRECATED_REVISION_ARGS,
43
44
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
45
    SAFETENSORS_WEIGHTS_NAME,
46
47
48
49
50
    WEIGHTS_NAME,
    BaseOutput,
    deprecate,
    get_class_from_dynamic_module,
    is_accelerate_available,
51
    is_accelerate_version,
52
    is_peft_available,
53
54
55
    is_torch_version,
    is_transformers_available,
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
56
    numpy_to_pil,
57
)
Dhruv Nair's avatar
Dhruv Nair committed
58
from ..utils.torch_utils import is_compiled_module
59
60
61
62
63


if is_transformers_available():
    import transformers
    from transformers import PreTrainedModel
64
65
66
67
    from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

68
from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, PushToHubMixin
69
70


71
72
73
74
if is_accelerate_available():
    import accelerate


75
76
77
78
INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
79
CONNECTED_PIPES_KEYS = ["prior"]
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
117
118
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
119
120
121
122
123
124
125
126
127
128
129
130
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
131
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
132
133
134
135
136
    """

    audios: np.ndarray


137
def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """
    Checking for safetensors compatibility:
    - By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
      files to know which safetensors files are needed.
    - The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
    pt_filenames = []

    sf_filenames = set()

153
154
    passed_components = passed_components or []

155
156
157
    for filename in filenames:
        _, extension = os.path.splitext(filename)

158
159
160
        if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
            continue

161
        if extension == ".bin":
162
            pt_filenames.append(os.path.normpath(filename))
163
        elif extension == ".safetensors":
164
            sf_filenames.add(os.path.normpath(filename))
165
166
167
168
169
170

    for filename in pt_filenames:
        #  filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extention = '.bam'
        path, filename = os.path.split(filename)
        filename, extension = os.path.splitext(filename)

171
172
        if filename.startswith("pytorch_model"):
            filename = filename.replace("pytorch_model", "model")
173
        else:
174
175
            filename = filename

176
        expected_sf_filename = os.path.normpath(os.path.join(path, filename))
177
178
179
180
181
182
        expected_sf_filename = f"{expected_sf_filename}.safetensors"
        if expected_sf_filename not in sf_filenames:
            logger.warning(f"{expected_sf_filename} not found")
            return False

    return True
183
184


185
def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
186
187
188
189
190
191
192
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]
193
194
195
196
197
198
199
200

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
201
    # -00001-of-00002
202
    transformers_index_format = r"\d{5}-of-\d{5}"
203
204

    if variant is not None:
205
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
206
        variant_file_re = re.compile(
207
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
208
209
210
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
211
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
212
        )
213

214
    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
215
    non_variant_file_re = re.compile(
216
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
217
    )
218
    # `text_encoder/pytorch_model.bin.index.json`
219
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")
220
221

    if variant is not None:
222
223
224
        variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
        variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
        variant_filenames = variant_weights | variant_indexes
225
226
227
    else:
        variant_filenames = set()

228
229
230
    non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
    non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
    non_variant_filenames = non_variant_weights | non_variant_indexes
231

232
    # all variant filenames will be used by default
233
    usable_filenames = set(variant_filenames)
234
235
236
237
238
239
240
241
242
243

    def convert_to_variant(filename):
        if "index" in filename:
            variant_filename = filename.replace("index", f"index.{variant}")
        elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
            variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
        else:
            variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
        return variant_filename

244
    for f in non_variant_filenames:
245
        variant_filename = convert_to_variant(f)
246
247
248
249
250
251
        if variant_filename not in usable_filenames:
            usable_filenames.add(f)

    return usable_filenames, variant_filenames


252
253
254
255
256
257
def warn_deprecated_model_variant(pretrained_model_name_or_path, use_auth_token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        use_auth_token=use_auth_token,
        revision=None,
    )
258
    filenames = {sibling.rfilename for sibling in info.siblings}
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(comp_model_filenames) == set(model_filenames):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


274
275
276
277
278
279
280
281
282
283
284
285
286
287
def _unwrap_model(model):
    """Unwraps a model."""
    if is_compiled_module(model):
        model = model._orig_mod

    if is_peft_available():
        from peft import PeftModel

        if isinstance(model, PeftModel):
            model = model.base_model.model

    return model


288
289
290
291
292
293
294
295
296
297
298
299
300
301
def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

302
303
304
        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
305
306
        unwrapped_sub_model = _unwrap_model(sub_model)
        model_cls = unwrapped_sub_model.__class__
307
308

        if not issubclass(model_cls, expected_class_obj):
309
            raise ValueError(
310
                f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
311
312
313
314
315
316
317
318
            )
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


319
320
321
def get_class_obj_and_candidates(
    library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=None, cache_dir=None
):
322
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
323
324
    component_folder = os.path.join(cache_dir, component_name)

325
326
327
328
329
    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
        class_candidates = {c: class_obj for c in importable_classes.keys()}
330
331
332
333
334
335
    elif os.path.isfile(os.path.join(component_folder, library_name + ".py")):
        # load custom component
        class_obj = get_class_from_dynamic_module(
            component_folder, module_file=library_name + ".py", class_name=class_name
        )
        class_candidates = {c: class_obj for c in importable_classes.keys()}
336
337
338
339
340
341
342
343
344
345
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


346
def _get_pipeline_class(
347
348
349
350
351
352
353
354
355
    class_obj,
    config,
    load_connected_pipeline=False,
    custom_pipeline=None,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
356
):
357
358
359
360
361
362
    if custom_pipeline is not None:
        if custom_pipeline.endswith(".py"):
            path = Path(custom_pipeline)
            # decompose into folder & file
            file_name = path.name
            custom_pipeline = path.parent.absolute()
363
364
365
        elif repo_id is not None:
            file_name = f"{custom_pipeline}.py"
            custom_pipeline = repo_id
366
367
368
        else:
            file_name = CUSTOM_PIPELINE_FILE_NAME

369
370
371
372
373
        if repo_id is not None and hub_revision is not None:
            # if we load the pipeline code from the Hub
            # make sure to overwrite the `revison`
            revision = hub_revision

374
        return get_class_from_dynamic_module(
375
376
377
378
379
            custom_pipeline,
            module_file=file_name,
            class_name=class_name,
            repo_id=repo_id,
            cache_dir=cache_dir,
380
            revision=revision,
381
382
383
384
385
386
        )

    if class_obj != DiffusionPipeline:
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
387
    class_name = config["_class_name"]
388
    class_name = class_name[4:] if class_name.startswith("Flax") else class_name
389
390

    pipeline_cls = getattr(diffusers_module, class_name)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

    if load_connected_pipeline:
        from .auto_pipeline import _get_connected_pipeline

        connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
        if connected_pipeline_cls is not None:
            logger.info(
                f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
            )
        else:
            logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")

        pipeline_cls = connected_pipeline_cls or pipeline_cls

    return pipeline_cls
406
407


408
409
410
411
412
413
414
415
416
417
418
def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
419
420
421
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
422
423
424
425
426
427
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
428
    revision: str = None,
429
430
431
432
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
    # retrieve class candidates
    class_obj, class_candidates = get_class_obj_and_candidates(
433
434
435
436
437
438
439
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    )

    load_method_name = None
    # retrive load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

    load_method = getattr(class_obj, load_method_name)

    # add kwargs to loading method
466
    diffusers_module = importlib.import_module(__name__.split(".")[0])
467
468
469
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
470
    if issubclass(class_obj, diffusers_module.OnnxRuntimeModel):
471
472
473
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options

474
    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
492
493
494
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        loading_kwargs["variant"] = model_variants.pop(name, None)
        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

    # check if the module is in a subdirectory
    if os.path.isdir(os.path.join(cached_folder, name)):
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

    return loaded_sub_model


528
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
529
    r"""
Steven Liu's avatar
Steven Liu committed
530
    Base class for all pipelines.
531

Steven Liu's avatar
Steven Liu committed
532
533
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
534
535

        - move all PyTorch modules to the device of your choice
536
        - enable/disable the progress bar for the denoising iteration
537
538
539

    Class attributes:

Steven Liu's avatar
Steven Liu committed
540
541
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
542
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
543
          pipeline to function (should be overridden by subclasses).
544
    """
545

546
    config_name = "model_index.json"
547
    model_cpu_offload_seq = None
548
    _optional_components = []
549
    _exclude_from_cpu_offload = []
550
    _load_connected_pipes = False
551
    _is_onnx = False
552
553
554

    def register_modules(self, **kwargs):
        # import it here to avoid circular import
555
556
        diffusers_module = importlib.import_module(__name__.split(".")[0])
        pipelines = getattr(diffusers_module, "pipelines")
557
558
559

        for name, module in kwargs.items():
            # retrieve library
560
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
561
562
                register_dict = {name: (None, None)}
            else:
563
                # register the config from the original module, not the dynamo compiled one
564
                not_compiled_module = _unwrap_model(module)
565

566
                library = not_compiled_module.__module__.split(".")[0]
567
568

                # check if the module is a pipeline module
569
                module_path_items = not_compiled_module.__module__.split(".")
570
571
                pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

572
                path = not_compiled_module.__module__.split(".")
573
574
575
576
577
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
578
                if is_pipeline_module:
579
                    library = pipeline_dir
580
                elif library not in LOADABLE_CLASSES:
581
                    library = not_compiled_module.__module__
582
583

                # retrieve class_name
584
                class_name = not_compiled_module.__class__.__name__
585
586
587
588
589
590
591
592
593

                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

594
    def __setattr__(self, name: str, value: Any):
595
        if name in self.__dict__ and hasattr(self.config, name):
596
597
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
598
                if value is not None and self.config[name][0] is not None:
599
600
601
602
603
604
605
606
607
608
                    class_library_tuple = (value.__module__.split(".")[0], value.__class__.__name__)
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

609
610
611
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
612
        safe_serialization: bool = True,
613
        variant: Optional[str] = None,
614
615
        push_to_hub: bool = False,
        **kwargs,
616
617
    ):
        """
Steven Liu's avatar
Steven Liu committed
618
619
620
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
621
622
623

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
624
                Directory to save a pipeline to. Will be created if it doesn't exist.
625
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
626
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
627
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
628
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
629
630
631
632
633
634
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
635
636
        """
        model_index_dict = dict(self.config)
637
638
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
639
        model_index_dict.pop("_module", None)
640
        model_index_dict.pop("_name_or_path", None)
641

642
643
644
645
646
647
648
649
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

650
651
652
653
654
655
656
657
658
659
660
661
662
663
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

664
665
666
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
667
                sub_model = _unwrap_model(sub_model)
668
669
                model_cls = sub_model.__class__

670
671
672
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
673
674
675
676
677
678
679
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

680
681
682
683
684
685
686
687
688
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

689
690
691
692
693
694
            if save_method_name is None:
                logger.warn(f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved.")
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

695
696
697
698
699
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
700
701
702
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
703
            if save_method_accept_safe:
704
705
706
707
708
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
709

710
711
712
        # finally save the config
        self.save_config(save_directory)

713
714
715
716
717
718
719
720
721
        if push_to_hub:
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
    def to(self, *args, **kwargs):
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """

        torch_dtype = kwargs.pop("torch_dtype", None)
        if torch_dtype is not None:
            deprecate("torch_dtype", "0.25.0", "")
        torch_device = kwargs.pop("torch_device", None)
        if torch_device is not None:
            deprecate("torch_device", "0.25.0", "")

        dtype_kwarg = kwargs.pop("dtype", None)
        device_kwarg = kwargs.pop("device", None)
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        if torch_dtype is not None and dtype_kwarg is not None:
            raise ValueError(
                "You have passed both `torch_dtype` and `dtype` as a keyword argument. Please make sure to only pass `dtype`."
            )

        dtype = torch_dtype or dtype_kwarg

        if torch_device is not None and device_kwarg is not None:
            raise ValueError(
                "You have passed both `torch_device` and `device` as a keyword argument. Please make sure to only pass `device`."
            )

        device = torch_device or device_kwarg

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
814

815
816
817
818
819
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

Patrick von Platen's avatar
Patrick von Platen committed
820
821
822
            return hasattr(module, "_hf_hook") and not isinstance(
                module._hf_hook, (accelerate.hooks.CpuOffload, accelerate.hooks.AlignDevicesHook)
            )
823
824
825
826
827
828
829
830
831
832
833

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
834
        if pipeline_is_sequentially_offloaded and device and torch.device(device).type == "cuda":
835
836
837
838
839
840
            raise ValueError(
                "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
            )

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
841
        if pipeline_is_offloaded and device and torch.device(device).type == "cuda":
842
843
844
845
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

846
        module_names, _ = self._get_signature_keys(self)
847
848
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
849

850
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
851
        for module in modules:
Patrick von Platen's avatar
Patrick von Platen committed
852
853
            is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit

854
            if is_loaded_in_8bit and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
855
856
857
858
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {torch_dtype} is not yet supported. Module is still in 8bit precision."
                )

859
            if is_loaded_in_8bit and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
860
861
862
863
                logger.warning(
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {torch_dtype} via `.to()` is not yet supported. Module is still on {module.device}."
                )
            else:
864
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
865

866
867
            if (
                module.dtype == torch.float16
868
                and str(device) in ["cpu"]
869
870
871
872
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
873
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
874
875
876
877
878
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
879
880
881
882
883
884
885
886
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
887
        module_names, _ = self._get_signature_keys(self)
888
889
890
891
892
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
893

894
895
        return torch.device("cpu")

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

911
912
913
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
914
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
915

Steven Liu's avatar
Steven Liu committed
916
        The pipeline is set in evaluation mode (`model.eval()`) by default.
917

Steven Liu's avatar
Steven Liu committed
918
        If you get the error message below, you need to finetune the weights for your downstream task:
919

Steven Liu's avatar
Steven Liu committed
920
921
922
923
924
        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
925
926
927
928
929

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
930
931
932
933
934
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
935
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
936
937
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
938
939
940
941
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
942
                🧪 This is an experimental feature and may change in the future.
943
944
945
946
947

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
948
949
950
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
951
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
952
953
954
955
956
957
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
958
959
960
961
962
963
964

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
965
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
966
967
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
968
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
969
970
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
971
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
972
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
973
974
975
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
976
977
978
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
979
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
980
981
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
982
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
983
984
985
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
986
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
987
988
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
989
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
990
991
992
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
993
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
994
995
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
996
997
                same device.

Steven Liu's avatar
Steven Liu committed
998
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
999
1000
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
1001
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
1002
1003
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
1004
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1005
                The path to offload weights if device_map contains the value `"disk"`.
1006
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
1007
1008
1009
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
1010
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
1011
1012
1013
1014
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
1015
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
1016
1017
1018
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
1019
1020
1021
1022
1023
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1024
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
1025
1026
1027
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
1028
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1029
1030
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
1031
1032
1033

        <Tip>

Steven Liu's avatar
Steven Liu committed
1034
1035
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
1066
        from_flax = kwargs.pop("from_flax", False)
1067
1068
1069
1070
1071
1072
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
1073
1074
1075
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
1076
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1077
        variant = kwargs.pop("variant", None)
1078
        use_safetensors = kwargs.pop("use_safetensors", None)
1079
        use_onnx = kwargs.pop("use_onnx", None)
1080
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1081
1082
1083
1084

        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
1085
1086
1087
1088
1089
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
1090
            cached_folder = cls.download(
1091
1092
1093
1094
1095
1096
1097
1098
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
1099
                from_flax=from_flax,
1100
                use_safetensors=use_safetensors,
1101
                use_onnx=use_onnx,
1102
                custom_pipeline=custom_pipeline,
1103
                custom_revision=custom_revision,
1104
                variant=variant,
1105
                load_connected_pipeline=load_connected_pipeline,
1106
                **kwargs,
1107
1108
1109
1110
            )
        else:
            cached_folder = pretrained_model_name_or_path

1111
1112
        config_dict = cls.load_config(cached_folder)

Patrick von Platen's avatar
Patrick von Platen committed
1113
1114
1115
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

1116
1117
1118
        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
1119
1120
1121
1122
1123
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
1124
1125
1126
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
1127
1128
1129
                if variant_exists:
                    model_variants[folder] = variant

1130
        # 3. Load the pipeline class, if using custom module then load it from the hub
1131
        # if we load from explicit class, let's use it
1132
1133
1134
1135
1136
1137
1138
1139
1140
        custom_class_name = None
        if os.path.isfile(os.path.join(cached_folder, f"{custom_pipeline}.py")):
            custom_pipeline = os.path.join(cached_folder, f"{custom_pipeline}.py")
        elif isinstance(config_dict["_class_name"], (list, tuple)) and os.path.isfile(
            os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
        ):
            custom_pipeline = os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
            custom_class_name = config_dict["_class_name"][1]

1141
        pipeline_class = _get_pipeline_class(
1142
1143
1144
1145
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
1146
            class_name=custom_class_name,
1147
1148
            cache_dir=cache_dir,
            revision=custom_revision,
1149
        )
1150

1151
        # DEPRECATED: To be removed in 1.0.0
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

1170
1171
1172
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

1173
1174
1175
1176
1177
1178
1179
1180
1181
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

1182
1183
1184
1185
1186
1187
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

1200
1201
1202
1203
1204
1205
1206
1207
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

1208
        # 5. Throw nice warnings / errors for fast accelerate loading
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

1244
        # 6. Load each module in the pipeline
1245
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
1246
            # 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
1247
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
1248

1249
            # 6.2 Define all importable classes
1250
            is_pipeline_module = hasattr(pipelines, library_name)
1251
            importable_classes = ALL_IMPORTABLE_CLASSES
1252
1253
            loaded_sub_model = None

1254
            # 6.3 Use passed sub model or load class_name from library_name
1255
            if name in passed_class_obj:
1256
1257
1258
1259
1260
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
1261
1262
1263

                loaded_sub_model = passed_class_obj[name]
            else:
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
                    device_map=device_map,
1276
1277
1278
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
1279
1280
1281
1282
1283
1284
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
1285
                    revision=revision,
1286
                )
1287
1288
1289
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
1290
1291
1292

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "resume_download": resume_download,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
                "use_auth_token": use_auth_token,
                "revision": revision,
                "torch_dtype": torch_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "provider": provider,
                "sess_options": sess_options,
                "device_map": device_map,
                "max_memory": max_memory,
                "offload_folder": offload_folder,
                "offload_state_dict": offload_state_dict,
                "low_cpu_mem_usage": low_cpu_mem_usage,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

            def get_connected_passed_kwargs(prefix):
                connected_passed_class_obj = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
                }
                connected_passed_pipe_kwargs = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
                }

                connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
                return connected_passed_kwargs

1329
            connected_pipes = {
1330
1331
1332
                prefix: DiffusionPipeline.from_pretrained(
                    repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
                )
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

1343
        # 7. Potentially add passed objects if expected
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1356
        # 8. Instantiate the pipeline
1357
        model = pipeline_class(**init_kwargs)
1358
1359
1360

        # 9. Save where the model was instantiated from
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1361
1362
        return model

1363
1364
1365
1366
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1389
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1390
1391
1392
1393
1394
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
1395
1396
1397
1398
1399
1400
1401

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
        """
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1423
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1424
1425
1426

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

        self._all_hooks = []
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1439
            model = all_model_components.pop(model_str, None)
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
            if not isinstance(model, torch.nn.Module):
                continue

            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1461
1462
1463
1464
        Function that offloads all components, removes all model hooks that were added when using
        `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
        is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
        functions correctly when applying enable_model_cpu_offload.
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
        """
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        for hook in self._all_hooks:
            # offload model and remove hook from model
            hook.offload()
            hook.remove()

        # make sure the model is in the same state as before calling it
        self.enable_model_cpu_offload()

1478
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1479
        r"""
1480
1481
1482
1483
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
1484
        `enable_model_cpu_offload`, but performance is lower.
1485
1486
1487
1488
1489
1490
1491

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1492
1493
1494
1495
1496
1497
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1508
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1509
1510
1511

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1512
1513
1514

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1515
1516
1517
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1531
1532
1533
    @classmethod
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1534
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1535
1536

        Parameters:
Steven Liu's avatar
Steven Liu committed
1537
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1538
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1539
                hosted on the Hub.
1540
1541
1542
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1543
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1544
1545
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1546
1547

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1548
1549
1550
1551
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1552

Steven Liu's avatar
Steven Liu committed
1553
1554
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1555

Steven Liu's avatar
Steven Liu committed
1556
                <Tip warning={true}>
1557

Steven Liu's avatar
Steven Liu committed
1558
                🧪 This is an experimental feature and may change in the future.
1559

Steven Liu's avatar
Steven Liu committed
1560
                </Tip>
1561

Steven Liu's avatar
Steven Liu committed
1562
1563
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1564
1565
1566
1567
1568

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1569
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
Steven Liu's avatar
Steven Liu committed
1570
                incompletely downloaded files are deleted.
1571
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1572
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1573
1574
1575
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1576
1577
1578
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1579
            use_auth_token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1580
1581
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1582
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1583
1584
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1585
            custom_revision (`str`, *optional*, defaults to `"main"`):
1586
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1587
1588
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1589
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1590
1591
1592
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1593
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1594
1595
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
1596
1597
1598
1599
1600
1601
1602
1603
1604
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1605
1606
1607
1608
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1609
1610
1611
1612

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1613
1614
1615

        <Tip>

Steven Liu's avatar
Steven Liu committed
1616
1617
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630

        </Tip>

        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1631
        custom_revision = kwargs.pop("custom_revision", None)
1632
        variant = kwargs.pop("variant", None)
1633
        use_safetensors = kwargs.pop("use_safetensors", None)
1634
        use_onnx = kwargs.pop("use_onnx", None)
1635
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1636
        trust_remote_code = kwargs.pop("trust_remote_code", False)
1637
1638
1639

        allow_pickle = False
        if use_safetensors is None:
1640
            use_safetensors = True
1641
            allow_pickle = True
1642
1643
1644
1645

        allow_patterns = None
        ignore_patterns = None

1646
        model_info_call_error: Optional[Exception] = None
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
        if not local_files_only:
            try:
                info = model_info(
                    pretrained_model_name,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
            except HTTPError as e:
                logger.warn(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
                local_files_only = True
1657
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1658

1659
1660
1661
1662
1663
        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1664
                revision=revision,
1665
1666
1667
1668
1669
1670
1671
                proxies=proxies,
                force_download=force_download,
                resume_download=resume_download,
                use_auth_token=use_auth_token,
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1672
1673
            ignore_filenames = config_dict.pop("_ignore_files", [])

1674
            # retrieve all folder_names that contain relevant files
1675
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]
1676

1677
            filenames = {sibling.rfilename for sibling in info.siblings}
1678
1679
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

1680
1681
1682
1683
1684
1685
1686
1687
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipelines = getattr(diffusers_module, "pipelines")

            # optionally create a custom component <> custom file mapping
            custom_components = {}
            for component in folder_names:
                module_candidate = config_dict[component][0]

1688
                if module_candidate is None or not isinstance(module_candidate, str):
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
                    continue

                candidate_file = os.path.join(component, module_candidate + ".py")

                if candidate_file in filenames:
                    custom_components[component] = module_candidate
                elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
                    raise ValueError(
                        f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."
                    )

1700
1701
1702
1703
            if len(variant_filenames) == 0 and variant is not None:
                deprecation_message = (
                    f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                    f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
1704
                    "if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
1705
1706
                    "modeling files is deprecated."
                )
1707
                deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)
1708

Patrick von Platen's avatar
Patrick von Platen committed
1709
1710
1711
1712
            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1713
1714
1715
            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1716
            ) >= version.parse("0.22.0"):
1717
1718
1719
1720
                warn_deprecated_model_variant(
                    pretrained_model_name, use_auth_token, variant, revision, model_filenames
                )

1721
            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
1722

1723
1724
1725
1726
1727
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

1728
1729
1730
1731
1732
            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1733
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1734
1735
1736
1737
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
1738
            # also allow downloading config.json files with the model
1739
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1740
1741
1742
1743
1744
1745
1746
1747

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1765
1766
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1767
1768
1769
1770
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1771
1772
1773
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1774
1775
                cache_dir=cache_dir,
                revision=custom_revision,
1776
1777
1778
1779
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1780
1781
1782
            if (
                use_safetensors
                and not allow_pickle
1783
1784
1785
                and not is_safetensors_compatible(
                    model_filenames, variant=variant, passed_components=passed_components
                )
1786
1787
            ):
                raise EnvironmentError(
1788
                    f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
1789
                )
1790
1791
            if from_flax:
                ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
1792
1793
1794
            elif use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
1795
1796
                ignore_patterns = ["*.bin", "*.msgpack"]

1797
1798
1799
1800
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1801
1802
                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

1813
1814
1815
1816
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1817
1818
                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
1819
1820
1821
1822
1823
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
                    logger.warn(
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )

1824
1825
1826
1827
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1828
1829
1830
1831

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1832
1833
1834
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]

1835
1836
1837
1838
1839
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1840

1841
1842
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1843

1844
            if pipeline_is_cached and not force_download:
1845
1846
1847
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1848

1849
1850
1851
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1852
1853

        # download all allow_patterns - ignore_patterns
1854
        try:
1855
            cached_folder = snapshot_download(
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
                pretrained_model_name,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1867

1868
1869
            # retrieve pipeline class from local file
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1870
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1871

1872
1873
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1874
1875

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1876
1877
1878
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "resume_download": resume_download,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
                        "use_auth_token": use_auth_token,
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1890
1891
1892

            return cached_folder

1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occured"
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1908

1909
1910
    @classmethod
    def _get_signature_keys(cls, obj):
1911
1912
1913
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1914
        expected_modules = set(required_parameters.keys()) - {"self"}
1915
1916
1917
1918
1919
1920
1921

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1922
1923
1924
1925
1926
1927
        return expected_modules, optional_parameters

    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1928
1929
1930
1931
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1955
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1956
1957
1958
1959
1960
1961
1962
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1963
        Convert a NumPy image or a batch of images to a PIL image.
1964
        """
Patrick von Platen's avatar
Patrick von Platen committed
1965
        return numpy_to_pil(images)
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1985
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1986
        r"""
1987
1988
1989
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1990

Steven Liu's avatar
Steven Liu committed
1991
        <Tip warning={true}>
1992

Steven Liu's avatar
Steven Liu committed
1993
1994
1995
1996
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
2017
        """
2018
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
2019
2020
2021

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
2022
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
2023
2024
2025
        """
        self.set_use_memory_efficient_attention_xformers(False)

2026
2027
2028
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
2029
2030
2031
2032
2033
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
2034
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
2035
2036
2037
2038

            for child in module.children():
                fn_recursive_set_mem_eff(child)

2039
2040
2041
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
2042

2043
2044
        for module in modules:
            fn_recursive_set_mem_eff(module)
2045
2046
2047

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
2048
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
2059
2060
2061
2062

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
2063
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
2064
2065
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5",
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
2083
2084
2085
2086
2087
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
2088
2089
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
2090
2091
2092
2093
2094
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
2095
2096
2097
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
2098

2099
2100
        for module in modules:
            module.set_attention_slice(slice_size)