README.md 12.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
<p align="center">
    <br>
vvssttkk's avatar
vvssttkk committed
3
    <img src="./docs/source/en/imgs/diffusers_library.jpg" width="400"/>
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
    <br>
<p>
<p align="center">
Anton Lozhkov's avatar
Anton Lozhkov committed
7
    <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
        <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
    </a>
    <a href="https://github.com/huggingface/diffusers/releases">
Anton Lozhkov's avatar
Anton Lozhkov committed
11
        <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
    </a>
    <a href="CODE_OF_CONDUCT.md">
        <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
    </a>
</p>

Steven Liu's avatar
Steven Liu committed
18
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
Patrick von Platen's avatar
Patrick von Platen committed
19

Steven Liu's avatar
Steven Liu committed
20
🤗 Diffusers offers three core components:
Patrick von Platen's avatar
Patrick von Platen committed
21

Steven Liu's avatar
Steven Liu committed
22
23
24
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code.
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality.
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
25

26
27
## Installation

Steven Liu's avatar
Steven Liu committed
28
We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/installation.html), please refer to their official documentation.
29

Steven Liu's avatar
Steven Liu committed
30
31
32
### PyTorch

With `pip` (official package):
33
34
    
```bash
35
pip install --upgrade diffusers[torch]
36
37
```

Steven Liu's avatar
Steven Liu committed
38
With `conda` (maintained by the community):
39
40
41
42
43

```sh
conda install -c conda-forge diffusers
```

Steven Liu's avatar
Steven Liu committed
44
### Flax
45

Steven Liu's avatar
Steven Liu committed
46
With `pip` (official package):
47
48
49
50
51

```bash
pip install --upgrade diffusers[flax]
```

Steven Liu's avatar
Steven Liu committed
52
### Apple Silicon (M1/M2) support
53

Steven Liu's avatar
Steven Liu committed
54
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide.
55

Patrick von Platen's avatar
Patrick von Platen committed
56
57
## Quickstart

Steven Liu's avatar
Steven Liu committed
58
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 4000+ checkpoints):
59

60
```python
Steven Liu's avatar
Steven Liu committed
61
from diffusers import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
62
import torch
63

Patrick von Platen's avatar
Patrick von Platen committed
64
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
Steven Liu's avatar
Steven Liu committed
65
66
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
67
68
```

Steven Liu's avatar
Steven Liu committed
69
You can also dig into the models and schedulers toolbox to build your own diffusion system:
70
71

```python
Steven Liu's avatar
Steven Liu committed
72
from diffusers import DDPMScheduler, UNet2DModel
73
from PIL import Image
74
import torch
Steven Liu's avatar
Steven Liu committed
75
import numpy as np
76

Steven Liu's avatar
Steven Liu committed
77
78
79
80
81
82
83
84
85
86
87
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)

sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
input = noise

for t in scheduler.timesteps:
    with torch.no_grad():
        noisy_residual = model(input, t).sample
qwjaskzxl's avatar
qwjaskzxl committed
88
89
        prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
        input = prev_noisy_sample
Steven Liu's avatar
Steven Liu committed
90
91
92

image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
qwjaskzxl's avatar
qwjaskzxl committed
93
image = Image.fromarray((image * 255).round().astype("uint8"))
Steven Liu's avatar
Steven Liu committed
94
95
96
97
98
99
100
101
102
image
```

Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today!

## How to navigate the documentation

| **Documentation**                                                   | **What can I learn?**                                                                                                                                                                           |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview)                                                            | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model.  |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview)                                                             | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers.                                         |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview)                                             | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library.               |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview)                                                        | Guides for how to optimize your diffusion model to run faster and consume less memory.                                                                                                          |
Steven Liu's avatar
Steven Liu committed
107
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques.                                                                                               |
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
112
113
114
115
116
117
118
119
## Contribution

We ❤️  contributions from the open-source community! 
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)

Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or
just hang out ☕.

Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

## Popular Tasks & Pipelines

<table>
  <tr>
    <th>Task</th>
    <th>Pipeline</th>
    <th>🤗 Hub</th>
  </tr>
  <tr style="border-top: 2px solid black">
    <td>Unconditional Image Generation</td>
    <td><a href="./api/pipelines/ddpm"> DDPM </a></td>
    <td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
  </tr>
  <tr style="border-top: 2px solid black">
    <td>Text-to-Image</td>
    <td><a href="./api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
      <td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
  </tr>
  <tr>
    <td>Text-to-Image</td>
    <td><a href="./api/pipelines/unclip">unclip</a></td>
      <td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
  </tr>
  <tr>
    <td>Text-to-Image</td>
    <td><a href="./api/pipelines/if">if</a></td>
      <td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
  </tr>
  <tr style="border-top: 2px solid black">
    <td>Text-guided Image-to-Image</td>
    <td><a href="./api/pipelines/stable_diffusion/controlnet">Controlnet</a></td>
      <td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
  </tr>
  <tr>
    <td>Text-guided Image-to-Image</td>
    <td><a href="./api/pipelines/stable_diffusion/pix2pix">Instruct Pix2Pix</a></td>
      <td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
  </tr>
  <tr>
    <td>Text-guided Image-to-Image</td>
    <td><a href="./api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
      <td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
  </tr>
  <tr style="border-top: 2px solid black">
    <td>Text-guided Image Inpainting</td>
    <td><a href="./api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpaint</a></td>
      <td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
  </tr>
  <tr style="border-top: 2px solid black">
    <td>Image Variation</td>
    <td><a href="./stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
      <td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
  </tr>
  <tr style="border-top: 2px solid black">
    <td>Super Resolution</td>
    <td><a href="./stable_diffusion/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
      <td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
  </tr>
  <tr>
    <td>Super Resolution</td>
    <td><a href="./stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
      <td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
  </tr>
</table>

Patrick von Platen's avatar
Patrick von Platen committed
186
## Popular using 🧨 Diffusers
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
190
191
192
193
194
195
196

- https://github.com/microsoft/TaskMatrix 
- https://github.com/invoke-ai/InvokeAI 
- https://github.com/apple/ml-stable-diffusion   
- https://github.com/Sanster/lama-cleaner 
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion 
- https://github.com/deep-floyd/IF  
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
- +3000 other amazing GitHub repositories 💪

Thank you for using us ❤️
Patrick von Platen's avatar
Patrick von Platen committed
200

201
202
203
204
205
206
## Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
Steven Liu's avatar
Steven Liu committed
207
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim)
208
209
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)

Patrick von Platen's avatar
Patrick von Platen committed
210
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
Patrick von Platen's avatar
Patrick von Platen committed
211
212
213

## Citation

Patrick von Platen's avatar
Patrick von Platen committed
214
```bibtex
Patrick von Platen's avatar
Patrick von Platen committed
215
@misc{von-platen-etal-2022-diffusers,
Patrick von Platen's avatar
Patrick von Platen committed
216
  author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf},
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
220
221
222
  title = {Diffusers: State-of-the-art diffusion models},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/huggingface/diffusers}}
}
Patrick von Platen's avatar
Patrick von Platen committed
223
```