Unverified Commit 8124863d authored by Pedro Cuenca's avatar Pedro Cuenca Committed by GitHub
Browse files

Initial docs update for new in-painting pipeline (#910)



Docs update for new in-painting pipeline.
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 89d12494
......@@ -210,14 +210,16 @@ You can also run this example on colab [![Open In Colab](https://colab.research.
### In-painting using Stable Diffusion
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and a text prompt. It uses a model optimized for this particular task, whose license you need to accept before use.
```python
from io import BytesIO
Please, visit the [model card](https://huggingface.co/runwayml/stable-diffusion-inpainting), read the license carefully and tick the checkbox if you agree. Note that this is an additional license, you need to accept it even if you accepted the text-to-image Stable Diffusion license in the past. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
import torch
import requests
```python
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
......@@ -231,21 +233,15 @@ mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
device = "cuda"
model_id_or_path = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id_or_path,
revision="fp16",
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
)
# or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
# and pass `model_id_or_path="./stable-diffusion-v1-4"`.
pipe = pipe.to(device)
prompt = "a cat sitting on a bench"
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
pipe = pipe.to("cuda")
images[0].save("cat_on_bench.png")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
### Tweak prompts reusing seeds and latents
......
......@@ -151,10 +151,10 @@ You can generate your own latents to reproduce results, or tweak your prompt on
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.
```python
from io import BytesIO
import requests
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
......@@ -170,15 +170,15 @@ mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
device = "cuda"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
).to(device)
prompt = "a cat sitting on a bench"
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
images[0].save("cat_on_bench.png")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
......@@ -12,13 +12,19 @@ specific language governing permissions and limitations under the License.
# Text-Guided Image-Inpainting
The [`StableDiffusionInpaintPipeline`] lets you edit specific parts of an image by providing a mask and text prompt.
The [`StableDiffusionInpaintPipeline`] lets you edit specific parts of an image by providing a mask and a text prompt. It uses a version of Stable Diffusion specifically trained for in-painting tasks.
```python
from io import BytesIO
<Tip warning={true}>
Note that this model is distributed separately from the regular Stable Diffusion model, so you have to accept its license even if you accepted the Stable Diffusion one in the past.
import requests
Please, visit the [model card](https://huggingface.co/runwayml/stable-diffusion-inpainting), read the license carefully and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
</Tip>
```python
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
......@@ -34,15 +40,24 @@ mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
device = "cuda"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16
).to(device)
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
prompt = "a cat sitting on a bench"
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
`image` | `mask_image` | `prompt` | **Output** |
:-------------------------:|:-------------------------:|:-------------------------:|-------------------------:|
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="250"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="250"/> | ***Face of a yellow cat, high resolution, sitting on a park bench*** | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="250"/> |
images[0].save("cat_on_bench.png")
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
<Tip warning={true}>
A previous experimental implementation of in-painting used a different, lower-quality process. To ensure backwards compatibility, loading a pretrained pipeline that doesn't contain the new model will still apply the old in-painting method.
</Tip>
\ No newline at end of file
......@@ -141,10 +141,10 @@ You can generate your own latents to reproduce results, or tweak your prompt on
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.
```python
from io import BytesIO
import requests
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
......@@ -158,17 +158,15 @@ mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
device = "cuda"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
).to(device)
prompt = "a cat sitting on a bench"
images = pipe(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
)
pipe = pipe.to("cuda")
images[0].save("cat_on_bench.png")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment