pipeline_utils.py 7.28 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
24
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
37
        "CLIPTextModel": ["save_pretrained", "from_pretrained"],  # TODO (Anton): move to transformers
Patrick von Platen's avatar
improve  
Patrick von Platen committed
38
        "GaussianDDPMScheduler": ["save_config", "from_config"],
39
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
40
        "GlideDDIMScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
41
42
    },
    "transformers": {
anton-l's avatar
anton-l committed
43
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
    },
}

47
48
49
50
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
51

Patrick von Platen's avatar
Patrick von Platen committed
52
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
56
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
patil-suraj's avatar
patil-suraj committed
60
61
62
63
            # if library is not in LOADABLE_CLASSES, then it is a custom module
            if library not in LOADABLE_CLASSES:
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
            # retrive class_name
            class_name = module.__class__.__name__

67
68
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
69
            # save model index config
70
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73

            # set models
            setattr(self, name, module)
74

anton-l's avatar
Style  
anton-l committed
75
        register_dict = {"_module": self.__module__.split(".")[-1] + ".py"}
76
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

81
        model_index_dict = self.config
Patrick von Platen's avatar
Patrick von Platen committed
82
        model_index_dict.pop("_class_name")
83
        model_index_dict.pop("_diffusers_version")
84
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
85

86
        for name, (library_name, class_name) in model_index_dict.items():
Patrick von Platen's avatar
Patrick von Platen committed
87
88
            importable_classes = LOADABLE_CLASSES[library_name]

89
90
91
92
            # TODO: Suraj
            if library_name == self.__module__:
                library_name = self

Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            save_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    save_method_name = importable_classes[class_name][0]

            save_method = getattr(getattr(self, name), save_method_name)
            save_method(os.path.join(save_directory, name))

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
107
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
108
        Add docstrings
109
110
111
112
113
114
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
patil-suraj's avatar
patil-suraj committed
115
116
        
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
117
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
118
        if not os.path.isdir(pretrained_model_name_or_path):
119
120
121
122
123
124
125
126
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
127
128
        else:
            cached_folder = pretrained_model_name_or_path
129

patil-suraj's avatar
patil-suraj committed
130
        config_dict = cls.get_config_dict(cached_folder)
131

patil-suraj's avatar
patil-suraj committed
132
        # 2. Get class name and module candidates to load custom models
patil-suraj's avatar
patil-suraj committed
133
        class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
134
        module_candidate = config_dict["_module"]
patil-suraj's avatar
patil-suraj committed
135
        module_candidate_name = module_candidate.replace(".py", "")
Patrick von Platen's avatar
fix  
Patrick von Platen committed
136

patil-suraj's avatar
patil-suraj committed
137
        # 3. Load the pipeline class, if using custom module then load it from the hub
138
139
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
140
141
            pipeline_class = cls
        else:
142
143
            # else we need to load the correct module from the Hub
            class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
144
            module = module_candidate
145
            pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
146

147
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
148
149
150

        init_kwargs = {}

patil-suraj's avatar
patil-suraj committed
151
        # 4. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
152
        for name, (library_name, class_name) in init_dict.items():
patil-suraj's avatar
patil-suraj committed
153
154
155
156
            # if the model is not in diffusers or transformers, we need to load it from the hub
            # assumes that it's a subclass of ModelMixin
            if library_name == module_candidate_name:
                class_obj = get_class_from_dynamic_module(cached_folder, module, class_name, cached_folder)
157
                # since it's not from a library, we need to check class candidates for all importable classes
158
159
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
patil-suraj's avatar
patil-suraj committed
160
            else:
patil-suraj's avatar
patil-suraj committed
161
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
162
163
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
164
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
165
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
166

167
168
169
170
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
171
172
173

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
174
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
175
            if os.path.isdir(os.path.join(cached_folder, name)):
176
177
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
178
                # else load from the root directory
179
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
180

181
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
182

patil-suraj's avatar
patil-suraj committed
183
        # 5. Instantiate the pipeline
184
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
185
        return model