scheduling_euler_discrete.py 34.1 KB
Newer Older
1
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput, is_scipy_available, logging
Dhruv Nair's avatar
Dhruv Nair committed
24
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27


28
29
30
if is_scipy_available():
    import scipy.stats

hlky's avatar
hlky committed
31
32
33
34
35
36
37
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EulerDiscreteSchedulerOutput(BaseOutput):
    """
38
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
39
40

    Args:
41
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
43
            denoising loop.
44
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
45
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
46
47
48
            `pred_original_sample` can be used to preview progress or for guidance.
    """

49
50
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
hlky's avatar
hlky committed
51
52


53
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
54
55
56
57
58
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
59
60
61
62
63
64
65
66
67
68
69
70
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
71
72
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
73
74
75
76

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
77
    if alpha_transform_type == "cosine":
78

YiYi Xu's avatar
YiYi Xu committed
79
80
81
82
83
84
85
86
87
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
88
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
89
90
91
92
93

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
94
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
95
96
97
    return torch.tensor(betas, dtype=torch.float32)


98
99
100
101
102
103
104
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
105
        betas (`torch.Tensor`):
106
107
108
            the betas that the scheduler is being initialized with.

    Returns:
109
        `torch.Tensor`: rescaled betas with zero terminal SNR
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


hlky's avatar
hlky committed
135
136
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
137
    Euler scheduler.
hlky's avatar
hlky committed
138

139
140
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
141
142

    Args:
143
144
145
146
147
148
149
150
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
151
            `linear` or `scaled_linear`.
152
153
154
155
156
157
158
159
160
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        interpolation_type(`str`, defaults to `"linear"`, *optional*):
            The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of
            `"linear"` or `"log_linear"`.
161
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
162
163
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
164
165
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
166
167
168
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
169
170
171
172
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
173
            An offset added to the inference steps, as required by some model families.
174
175
176
177
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
178
179
180
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
hlky's avatar
hlky committed
181
182
    """

Kashif Rasul's avatar
Kashif Rasul committed
183
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
184
    order = 1
185

hlky's avatar
hlky committed
186
187
188
189
190
191
192
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
193
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Suraj Patil's avatar
Suraj Patil committed
194
        prediction_type: str = "epsilon",
195
        interpolation_type: str = "linear",
196
        use_karras_sigmas: Optional[bool] = False,
197
        use_exponential_sigmas: Optional[bool] = False,
198
        use_beta_sigmas: Optional[bool] = False,
Suraj Patil's avatar
Suraj Patil committed
199
200
        sigma_min: Optional[float] = None,
        sigma_max: Optional[float] = None,
201
        timestep_spacing: str = "linspace",
Suraj Patil's avatar
Suraj Patil committed
202
        timestep_type: str = "discrete",  # can be "discrete" or "continuous"
203
        steps_offset: int = 0,
204
        rescale_betas_zero_snr: bool = False,
205
        final_sigmas_type: str = "zero",  # can be "zero" or "sigma_min"
hlky's avatar
hlky committed
206
    ):
207
208
209
210
211
212
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
hlky's avatar
hlky committed
213
        if trained_betas is not None:
214
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
215
216
217
218
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
219
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
220
221
222
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
223
        else:
224
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
hlky's avatar
hlky committed
225

226
227
228
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

hlky's avatar
hlky committed
229
230
231
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

232
233
234
235
236
        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

237
        sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0)
Suraj Patil's avatar
Suraj Patil committed
238
239
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
hlky's avatar
hlky committed
240
241
242

        # setable values
        self.num_inference_steps = None
Suraj Patil's avatar
Suraj Patil committed
243
244
245
246
247
248
249
250
251

        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if timestep_type == "continuous" and prediction_type == "v_prediction":
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas])
        else:
            self.timesteps = timesteps

        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

hlky's avatar
hlky committed
252
        self.is_scale_input_called = False
253
        self.use_karras_sigmas = use_karras_sigmas
254
        self.use_exponential_sigmas = use_exponential_sigmas
255
        self.use_beta_sigmas = use_beta_sigmas
hlky's avatar
hlky committed
256

YiYi Xu's avatar
YiYi Xu committed
257
        self._step_index = None
258
        self._begin_index = None
259
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
260

261
262
263
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
264
        max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max()
265
        if self.config.timestep_spacing in ["linspace", "trailing"]:
266
            return max_sigma
267

268
        return (max_sigma**2 + 1) ** 0.5
269

YiYi Xu's avatar
YiYi Xu committed
270
271
272
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
273
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
274
275
276
        """
        return self._step_index

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

295
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
hlky's avatar
hlky committed
296
        """
297
298
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
299
300

        Args:
301
            sample (`torch.Tensor`):
302
303
304
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
305
306

        Returns:
307
            `torch.Tensor`:
308
                A scaled input sample.
hlky's avatar
hlky committed
309
        """
YiYi Xu's avatar
YiYi Xu committed
310
311
        if self.step_index is None:
            self._init_step_index(timestep)
312

YiYi Xu's avatar
YiYi Xu committed
313
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
314
        sample = sample / ((sigma**2 + 1) ** 0.5)
315

hlky's avatar
hlky committed
316
317
318
        self.is_scale_input_called = True
        return sample

319
320
321
322
323
324
325
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
        sigmas: Optional[List[float]] = None,
    ):
hlky's avatar
hlky committed
326
        """
327
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
328
329
330

        Args:
            num_inference_steps (`int`):
331
332
333
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
334
335
336
337
338
339
340
341
342
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
                based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
                must be `None`, and `timestep_spacing` attribute will be ignored.
            sigmas (`List[float]`, *optional*):
                Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas
                will be generated based on the relevant scheduler attributes. If `sigmas` is passed,
                `num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the
                custom sigmas schedule.
hlky's avatar
hlky committed
343
344
        """

345
346
347
348
349
350
351
352
        if timesteps is not None and sigmas is not None:
            raise ValueError("Only one of `timesteps` or `sigmas` should be set.")
        if num_inference_steps is None and timesteps is None and sigmas is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.")
        if num_inference_steps is not None and (timesteps is not None or sigmas is not None):
            raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
353
354
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
355
356
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
357
358
359
360
361
        if (
            timesteps is not None
            and self.config.timestep_type == "continuous"
            and self.config.prediction_type == "v_prediction"
        ):
362
            raise ValueError(
363
                "Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`."
364
365
            )

366
367
368
        if num_inference_steps is None:
            num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1
        self.num_inference_steps = num_inference_steps
369

370
371
372
373
        if sigmas is not None:
            log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5))
            sigmas = np.array(sigmas).astype(np.float32)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]])
374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        else:
            if timesteps is not None:
                timesteps = np.array(timesteps).astype(np.float32)
            else:
                # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
                if self.config.timestep_spacing == "linspace":
                    timesteps = np.linspace(
                        0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32
                    )[::-1].copy()
                elif self.config.timestep_spacing == "leading":
                    step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                    # creates integer timesteps by multiplying by ratio
                    # casting to int to avoid issues when num_inference_step is power of 3
                    timesteps = (
                        (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
                    )
                    timesteps += self.config.steps_offset
                elif self.config.timestep_spacing == "trailing":
                    step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                    # creates integer timesteps by multiplying by ratio
                    # casting to int to avoid issues when num_inference_step is power of 3
                    timesteps = (
                        (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
                    )
                    timesteps -= 1
                else:
                    raise ValueError(
                        f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                    )

            sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
            log_sigmas = np.log(sigmas)
            if self.config.interpolation_type == "linear":
                sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            elif self.config.interpolation_type == "log_linear":
                sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
            else:
                raise ValueError(
                    f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
                    " 'linear' or 'log_linear'"
                )

            if self.config.use_karras_sigmas:
                sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

421
422
423
424
            elif self.config.use_exponential_sigmas:
                sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

425
426
427
428
            elif self.config.use_beta_sigmas:
                sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

429
430
431
432
433
434
435
436
437
438
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )

            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
439

Suraj Patil's avatar
Suraj Patil committed
440
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
YiYi Xu's avatar
YiYi Xu committed
441

Suraj Patil's avatar
Suraj Patil committed
442
443
        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
444
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device)
Suraj Patil's avatar
Suraj Patil committed
445
446
447
        else:
            self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)

YiYi Xu's avatar
YiYi Xu committed
448
        self._step_index = None
449
        self._begin_index = None
450
        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
hlky's avatar
hlky committed
451

452
453
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
454
        log_sigma = np.log(np.maximum(sigma, 1e-10))
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
476
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
477
478
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
493
494

        rho = 7.0  # 7.0 is the value used in the paper
495
        ramp = np.linspace(0, 1, num_inference_steps)
496
497
498
499
500
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
        return sigmas

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.Tensor(
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

554
555
556
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
557

558
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
559
560
561
562
563

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
564
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
565

566
567
568
569
570
571
572
573
574
        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
575

hlky's avatar
hlky committed
576
577
    def step(
        self,
578
579
580
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
hlky's avatar
hlky committed
581
582
583
584
585
586
587
588
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
        """
589
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
590
591
592
        process from the learned model outputs (most often the predicted noise).

        Args:
593
            model_output (`torch.Tensor`):
594
595
596
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
597
            sample (`torch.Tensor`):
598
599
600
601
602
603
604
605
606
607
608
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.
hlky's avatar
hlky committed
609
610

        Returns:
611
612
613
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
614
615
        """

616
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
hlky's avatar
hlky committed
617
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
618
619
620
621
622
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
623
624
625
            )

        if not self.is_scale_input_called:
626
            logger.warning(
hlky's avatar
hlky committed
627
628
629
630
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
631
632
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
633

634
635
636
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

YiYi Xu's avatar
YiYi Xu committed
637
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
638
639
640
641
642
643

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
644
645
646
647
            noise = randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
            )
            eps = noise * s_noise
hlky's avatar
hlky committed
648
649
650
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
651
652
653
        # NOTE: "original_sample" should not be an expected prediction_type but is left in for
        # backwards compatibility
        if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample":
654
655
            pred_original_sample = model_output
        elif self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
656
            pred_original_sample = sample - sigma_hat * model_output
657
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
658
            # denoised = model_output * c_out + input * c_skip
Suraj Patil's avatar
Suraj Patil committed
659
660
661
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
662
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
Suraj Patil's avatar
Suraj Patil committed
663
            )
hlky's avatar
hlky committed
664
665
666
667

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

YiYi Xu's avatar
YiYi Xu committed
668
        dt = self.sigmas[self.step_index + 1] - sigma_hat
hlky's avatar
hlky committed
669
670
671

        prev_sample = sample + derivative * dt

672
673
674
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

YiYi Xu's avatar
YiYi Xu committed
675
676
677
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
678
        if not return_dict:
679
680
681
682
            return (
                prev_sample,
                pred_original_sample,
            )
hlky's avatar
hlky committed
683
684
685
686
687

        return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
688
689
690
691
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
hlky's avatar
hlky committed
692
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
693
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
694
695
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
696
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
697
698
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
699
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
700
701
            timesteps = timesteps.to(original_samples.device)

702
703
704
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
705
706
707
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
708
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
709
            # add noise is called before first denoising step to create initial latent(img2img)
710
            step_indices = [self.begin_index] * timesteps.shape[0]
hlky's avatar
hlky committed
711

712
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
713
714
715
716
717
718
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

719
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
        if (
            isinstance(timesteps, int)
            or isinstance(timesteps, torch.IntTensor)
            or isinstance(timesteps, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if sample.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
            timesteps = timesteps.to(sample.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(sample.device)
            timesteps = timesteps.to(sample.device)

        step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        alphas_cumprod = self.alphas_cumprod.to(sample)
        sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

hlky's avatar
hlky committed
756
757
    def __len__(self):
        return self.config.num_train_timesteps