scheduling_euler_discrete.py 13.1 KB
Newer Older
hlky's avatar
hlky committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
16
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
17
18
19
20
21

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
22
23
from ..utils import BaseOutput, logging, randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EulerDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original
    k-diffusion implementation by Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
56
57
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
hlky's avatar
hlky committed
58
59
60
61
62
63
64
65
66
67

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
68
        prediction_type (`str`, default `"epsilon"`, optional):
69
70
71
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
72
73
74
        interpolation_type (`str`, default `"linear"`, optional):
            interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of
            [`"linear"`, `"log_linear"`].
hlky's avatar
hlky committed
75
76
    """

Kashif Rasul's avatar
Kashif Rasul committed
77
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
78
    order = 1
79

hlky's avatar
hlky committed
80
81
82
83
84
85
86
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
87
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Suraj Patil's avatar
Suraj Patil committed
88
        prediction_type: str = "epsilon",
89
        interpolation_type: str = "linear",
hlky's avatar
hlky committed
90
91
    ):
        if trained_betas is not None:
92
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
136

hlky's avatar
hlky committed
137
        sample = sample / ((sigma**2 + 1) ** 0.5)
138

hlky's avatar
hlky committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps

        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
156
157
158
159
160
161
162
163
164
165
166

        if self.config.interpolation_type == "linear":
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        elif self.config.interpolation_type == "log_linear":
            sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp()
        else:
            raise ValueError(
                f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
                " 'linear' or 'log_linear'"
            )

hlky's avatar
hlky committed
167
168
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
169
170
171
172
173
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
hlky's avatar
hlky committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`float`): current timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            s_churn (`float`)
            s_tmin  (`float`)
            s_tmax  (`float`)
            s_noise (`float`)
            generator (`torch.Generator`, optional): Random number generator.
            return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.

        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
219
220
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
221
222
223
            )

        if not self.is_scale_input_called:
224
            logger.warning(
hlky's avatar
hlky committed
225
226
227
228
229
230
231
232
233
234
235
236
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

237
238
239
        noise = randn_tensor(
            model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
        )
240

hlky's avatar
hlky committed
241
242
243
244
245
246
247
        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
248
249
250
        if self.config.prediction_type == "original_sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
251
            pred_original_sample = sample - sigma_hat * model_output
252
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
253
254
255
256
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
257
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
Suraj Patil's avatar
Suraj Patil committed
258
            )
hlky's avatar
hlky committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

        dt = self.sigmas[step_index + 1] - sigma_hat

        prev_sample = sample + derivative * dt

        if not return_dict:
            return (prev_sample,)

        return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            self.timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        schedule_timesteps = self.timesteps
Anton Lozhkov's avatar
Anton Lozhkov committed
289
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
hlky's avatar
hlky committed
290
291
292
293
294
295
296
297
298
299

        sigma = self.sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps