Unverified Commit 65f9439b authored by hlky's avatar hlky Committed by GitHub
Browse files

[Schedulers] Add exponential sigmas / exponential noise schedule (#9499)



* exponential sigmas

* Apply suggestions from code review
Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>

* make style

---------
Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
parent 00f5b418
......@@ -158,6 +158,8 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
......@@ -186,6 +188,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
prediction_type: str = "epsilon",
interpolation_type: str = "linear",
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
sigma_min: Optional[float] = None,
sigma_max: Optional[float] = None,
timestep_spacing: str = "linspace",
......@@ -235,6 +238,7 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
self.is_scale_input_called = False
self.use_karras_sigmas = use_karras_sigmas
self.use_exponential_sigmas = use_exponential_sigmas
self._step_index = None
self._begin_index = None
......@@ -332,6 +336,12 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.")
if timesteps is not None and self.config.use_karras_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
if timesteps is not None and self.config.use_exponential_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
if self.config.use_exponential_sigmas and self.config.use_karras_sigmas:
raise ValueError(
"Cannot set both `config.use_exponential_sigmas = True` and config.use_karras_sigmas = True`"
)
if (
timesteps is not None
and self.config.timestep_type == "continuous"
......@@ -396,6 +406,10 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
if self.config.final_sigmas_type == "sigma_min":
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
elif self.config.final_sigmas_type == "zero":
......@@ -468,6 +482,28 @@ class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
return sigmas
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment