"docs/zh_cn/get_started/api_reference.md" did not exist on "2754cb11d5313e4ae375e64a791794b64bc29a71"
scheduling_euler_discrete.py 23.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27
28
29
30
31
32
33
34


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EulerDiscreteSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
36
37
38

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
40
41
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
43
44
45
46
47
48
49
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
57
58
59
60
61
62
63
64
65
66
67
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72
73

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
85
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
86
87
88
89
90

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
93
94
    return torch.tensor(betas, dtype=torch.float32)


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.FloatTensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.FloatTensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


hlky's avatar
hlky committed
132
133
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
134
    Euler scheduler.
hlky's avatar
hlky committed
135

136
137
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
138
139

    Args:
140
141
142
143
144
145
146
147
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
148
            `linear` or `scaled_linear`.
149
150
151
152
153
154
155
156
157
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        interpolation_type(`str`, defaults to `"linear"`, *optional*):
            The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of
            `"linear"` or `"log_linear"`.
158
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
159
160
161
162
163
164
165
166
167
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
168
169
170
171
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
hlky's avatar
hlky committed
172
173
    """

Kashif Rasul's avatar
Kashif Rasul committed
174
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
175
    order = 1
176

hlky's avatar
hlky committed
177
178
179
180
181
182
183
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
184
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Suraj Patil's avatar
Suraj Patil committed
185
        prediction_type: str = "epsilon",
186
        interpolation_type: str = "linear",
187
        use_karras_sigmas: Optional[bool] = False,
Suraj Patil's avatar
Suraj Patil committed
188
189
        sigma_min: Optional[float] = None,
        sigma_max: Optional[float] = None,
190
        timestep_spacing: str = "linspace",
Suraj Patil's avatar
Suraj Patil committed
191
        timestep_type: str = "discrete",  # can be "discrete" or "continuous"
192
        steps_offset: int = 0,
193
        rescale_betas_zero_snr: bool = False,
hlky's avatar
hlky committed
194
195
    ):
        if trained_betas is not None:
196
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
197
198
199
200
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
201
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
202
203
204
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
205
206
207
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

208
209
210
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

hlky's avatar
hlky committed
211
212
213
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

214
215
216
217
218
        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

hlky's avatar
hlky committed
219
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
Suraj Patil's avatar
Suraj Patil committed
220
221
222
223
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()

        sigmas = torch.from_numpy(sigmas[::-1].copy()).to(dtype=torch.float32)
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
hlky's avatar
hlky committed
224
225
226

        # setable values
        self.num_inference_steps = None
Suraj Patil's avatar
Suraj Patil committed
227
228
229
230
231
232
233
234
235

        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if timestep_type == "continuous" and prediction_type == "v_prediction":
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas])
        else:
            self.timesteps = timesteps

        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

hlky's avatar
hlky committed
236
        self.is_scale_input_called = False
237
        self.use_karras_sigmas = use_karras_sigmas
hlky's avatar
hlky committed
238

YiYi Xu's avatar
YiYi Xu committed
239
        self._step_index = None
240
        self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
241

242
243
244
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
245
        max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max()
246
        if self.config.timestep_spacing in ["linspace", "trailing"]:
247
            return max_sigma
248

249
        return (max_sigma**2 + 1) ** 0.5
250

YiYi Xu's avatar
YiYi Xu committed
251
252
253
254
255
256
257
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

hlky's avatar
hlky committed
258
259
260
261
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
262
263
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
264
265

        Args:
266
267
268
269
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
270
271

        Returns:
272
273
            `torch.FloatTensor`:
                A scaled input sample.
hlky's avatar
hlky committed
274
        """
YiYi Xu's avatar
YiYi Xu committed
275
276
        if self.step_index is None:
            self._init_step_index(timestep)
277

YiYi Xu's avatar
YiYi Xu committed
278
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
279
        sample = sample / ((sigma**2 + 1) ** 0.5)
280

hlky's avatar
hlky committed
281
282
283
284
285
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
286
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
287
288
289

        Args:
            num_inference_steps (`int`):
290
291
292
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
hlky's avatar
hlky committed
293
294
295
        """
        self.num_inference_steps = num_inference_steps

296
297
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
298
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
299
300
301
302
303
304
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
305
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
306
307
308
309
310
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
311
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
312
313
314
315
316
317
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

hlky's avatar
hlky committed
318
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
319
        log_sigmas = np.log(sigmas)
320
321
322
323

        if self.config.interpolation_type == "linear":
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        elif self.config.interpolation_type == "log_linear":
324
            sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
325
326
327
328
329
330
        else:
            raise ValueError(
                f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
                " 'linear' or 'log_linear'"
            )

331
        if self.use_karras_sigmas:
332
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
333
334
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

Suraj Patil's avatar
Suraj Patil committed
335
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
YiYi Xu's avatar
YiYi Xu committed
336

Suraj Patil's avatar
Suraj Patil committed
337
338
339
340
341
342
343
        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(device=device)
        else:
            self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)

        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
YiYi Xu's avatar
YiYi Xu committed
344
        self._step_index = None
345
        self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
hlky's avatar
hlky committed
346

347
348
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
349
        log_sigma = np.log(np.maximum(sigma, 1e-10))
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
371
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
372
373
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
388
389

        rho = 7.0  # 7.0 is the value used in the paper
390
        ramp = np.linspace(0, 1, num_inference_steps)
391
392
393
394
395
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

YiYi Xu's avatar
YiYi Xu committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
        else:
            step_index = index_candidates[0]

        self._step_index = step_index.item()

hlky's avatar
hlky committed
413
414
415
416
417
418
419
420
421
422
423
424
425
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
        """
426
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
427
428
429
        process from the learned model outputs (most often the predicted noise).

        Args:
430
431
432
433
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
hlky's avatar
hlky committed
434
            sample (`torch.FloatTensor`):
435
436
437
438
439
440
441
442
443
444
445
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.
hlky's avatar
hlky committed
446
447

        Returns:
448
449
450
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
451
452
453
454
455
456
457
458
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
459
460
461
462
463
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
464
465
466
            )

        if not self.is_scale_input_called:
467
            logger.warning(
hlky's avatar
hlky committed
468
469
470
471
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
472
473
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
474

475
476
477
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

YiYi Xu's avatar
YiYi Xu committed
478
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
479
480
481

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

482
483
484
        noise = randn_tensor(
            model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
        )
485

hlky's avatar
hlky committed
486
487
488
489
490
491
492
        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
493
494
495
        # NOTE: "original_sample" should not be an expected prediction_type but is left in for
        # backwards compatibility
        if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample":
496
497
            pred_original_sample = model_output
        elif self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
498
            pred_original_sample = sample - sigma_hat * model_output
499
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
500
            # denoised = model_output * c_out + input * c_skip
Suraj Patil's avatar
Suraj Patil committed
501
502
503
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
504
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
Suraj Patil's avatar
Suraj Patil committed
505
            )
hlky's avatar
hlky committed
506
507
508
509

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

YiYi Xu's avatar
YiYi Xu committed
510
        dt = self.sigmas[self.step_index + 1] - sigma_hat
hlky's avatar
hlky committed
511
512
513

        prev_sample = sample + derivative * dt

514
515
516
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

YiYi Xu's avatar
YiYi Xu committed
517
518
519
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
520
521
522
523
524
525
526
527
528
529
530
531
        if not return_dict:
            return (prev_sample,)

        return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
532
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
533
534
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
535
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
536
537
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
538
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
539
540
            timesteps = timesteps.to(original_samples.device)

Anton Lozhkov's avatar
Anton Lozhkov committed
541
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
hlky's avatar
hlky committed
542

543
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
544
545
546
547
548
549
550
551
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps