".github/vscode:/vscode.git/clone" did not exist on "3238c49121b02432bf2938c6ebfd44f06c5adc2f"
test_modeling_utils.py 18.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

24
import pytest
25
26
27
28
29
30
31
32
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
33
    GLIDESuperResUNetModel,
34
35
36
    LatentDiffusion,
    PNDMScheduler,
    UNetModel,
patil-suraj's avatar
patil-suraj committed
37
    UNetLDMModel,
38
)
39
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
40
from diffusers.pipeline_utils import DiffusionPipeline
41
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
42
from diffusers.testing_utils import floats_tensor, slow, torch_device
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
torch.backends.cuda.matmul.allow_tf32 = False
46
47


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
65
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

85
86
87
88
89
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
90
class ModelTesterMixin:
91
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
92
93
94
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
95
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
96
        model.eval()
97
98
99

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
100
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
101
            new_model.to(torch_device)
102

patil-suraj's avatar
patil-suraj committed
103
104
105
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
106

patil-suraj's avatar
patil-suraj committed
107
108
        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
109

patil-suraj's avatar
patil-suraj committed
110
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
125

patil-suraj's avatar
patil-suraj committed
126
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
127
128
129
130
131
132
133
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
134

patil-suraj's avatar
patil-suraj committed
135
136
137
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
138

patil-suraj's avatar
patil-suraj committed
139
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
140
141
142
143
144
145
146
147
148
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
149

patil-suraj's avatar
patil-suraj committed
150
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
151
152
153
154
155
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
156

patil-suraj's avatar
patil-suraj committed
157
158
159
160
161
162
163
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
164

patil-suraj's avatar
patil-suraj committed
165
166
167
168
169
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
170

patil-suraj's avatar
patil-suraj committed
171
172
173
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
174

patil-suraj's avatar
patil-suraj committed
175
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
176
177

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
178
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
179

patil-suraj's avatar
patil-suraj committed
180
181
182
183
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
184
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
185
186
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
187

patil-suraj's avatar
patil-suraj committed
188
189
190
191
192
193
194
195
196
197
198
199
200

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
201
        return {"x": noise, "timesteps": time_step}
202

patil-suraj's avatar
patil-suraj committed
203
204
205
    @property
    def get_input_shape(self):
        return (3, 32, 32)
206

patil-suraj's avatar
patil-suraj committed
207
208
209
    @property
    def get_output_shape(self):
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
210
211
212
213
214
215
216
217
218
219
220

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
221

patil-suraj's avatar
patil-suraj committed
222
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
223
224
225
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
226

patil-suraj's avatar
patil-suraj committed
227
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
228
229
230
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
231

patil-suraj's avatar
patil-suraj committed
232
233
234
235
236
237
238
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
239

patil-suraj's avatar
patil-suraj committed
240
241
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
242

patil-suraj's avatar
patil-suraj committed
243
244
        with torch.no_grad():
            output = model(noise, time_step)
245

patil-suraj's avatar
patil-suraj committed
246
247
248
249
250
251
252
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([ 0.2891, -0.1899,  0.2595, -0.6214,  0.0968, -0.2622,  0.4688,  0.1311, 0.0053])
        # fmt: on
        print(output_slice)
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

253

patil-suraj's avatar
patil-suraj committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GLIDESuperResUNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        torch_device = "cpu"

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "low_res": low_res}
271

patil-suraj's avatar
patil-suraj committed
272
273
274
    @property
    def get_input_shape(self):
        return (3, 32, 32)
275

patil-suraj's avatar
patil-suraj committed
276
277
278
    @property
    def get_output_shape(self):
        return (6, 32, 32)
279

patil-suraj's avatar
patil-suraj committed
280
281
282
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
283
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
284
285
286
287
288
289
290
291
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
292
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
307

patil-suraj's avatar
patil-suraj committed
308
309
310
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
311

patil-suraj's avatar
patil-suraj committed
312
    def test_from_pretrained_hub(self):
313
314
315
        model, loading_info = GLIDESuperResUNetModel.from_pretrained(
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
316
317
318
319
320
321
322
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
323

patil-suraj's avatar
patil-suraj committed
324
325
326
327
328
329
    def test_output_pretrained(self):
        model = GLIDESuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
330

331
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
332
333
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
334

patil-suraj's avatar
patil-suraj committed
335
336
        with torch.no_grad():
            output = model(noise, time_step, low_res)
337

patil-suraj's avatar
patil-suraj committed
338
339
340
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
341
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
342
343
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
344

patil-suraj's avatar
patil-suraj committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetLDMModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
    def get_input_shape(self):
        return (4, 32, 32)

    @property
    def get_output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "model_channels": 32,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
            "channel_mult": (1, 2),
            "num_heads": 2,
            "conv_resample": True,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
    
    def test_from_pretrained_hub(self):
        model, loading_info = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
413

414
415
416
417
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
418
        schedular = DDPMScheduler(timesteps=10)
419
420
421
422
423
424

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
425
426

        generator = torch.manual_seed(0)
427

patil-suraj's avatar
patil-suraj committed
428
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
429
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
430
        new_image = new_ddpm(generator=generator)
431
432
433
434
435
436
437
438
439
440
441
442
443

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
444
        generator = torch.manual_seed(0)
445

patil-suraj's avatar
patil-suraj committed
446
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
447
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
448
        new_image = ddpm_from_hub(generator=generator)
449
450

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
451
452
453
454
455
456

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
457
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
458
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
459
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
460
461

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
462
463
464
465
466
467
468
469
470
471
472
473
474
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
475
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
476
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
477
478

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
479
480
481
482
483
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
484
485
486
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
487
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
488

Patrick von Platen's avatar
Patrick von Platen committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()
        print(image_slice.shape)

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
522
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
523

anton-l's avatar
anton-l committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

539
540
541
542
543
544
545
546
547
548
549
550
551
552
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
553
            _ = DiffusionPipeline.from_pretrained(tmpdirname)