image_processor.py 51.1 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
YiYi Xu's avatar
YiYi Xu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
YiYi Xu's avatar
YiYi Xu committed
16
import warnings
17
from typing import List, Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
18
19

import numpy as np
Anh71me's avatar
Anh71me committed
20
import PIL.Image
YiYi Xu's avatar
YiYi Xu committed
21
import torch
22
import torch.nn.functional as F
23
from PIL import Image, ImageFilter, ImageOps
YiYi Xu's avatar
YiYi Xu committed
24
25

from .configuration_utils import ConfigMixin, register_to_config
26
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
27
28


29
30
31
PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
32
    torch.Tensor,
33
34
    List[PIL.Image.Image],
    List[np.ndarray],
35
    List[torch.Tensor],
36
37
]

38
PipelineDepthInput = PipelineImageInput
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def is_valid_image(image) -> bool:
    r"""
    Checks if the input is a valid image.

    A valid image can be:
    - A `PIL.Image.Image`.
    - A 2D or 3D `np.ndarray` or `torch.Tensor` (grayscale or color image).

    Args:
        image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`):
            The image to validate. It can be a PIL image, a NumPy array, or a torch tensor.

    Returns:
        `bool`:
            `True` if the input is a valid image, `False` otherwise.
    """
57
58
59
60
    return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)


def is_valid_image_imagelist(images):
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    r"""
    Checks if the input is a valid image or list of images.

    The input can be one of the following formats:
    - A 4D tensor or numpy array (batch of images).
    - A valid single image: `PIL.Image.Image`, 2D `np.ndarray` or `torch.Tensor` (grayscale image), 3D `np.ndarray` or
      `torch.Tensor`.
    - A list of valid images.

    Args:
        images (`Union[np.ndarray, torch.Tensor, PIL.Image.Image, List]`):
            The image(s) to check. Can be a batch of images (4D tensor/array), a single image, or a list of valid
            images.

    Returns:
        `bool`:
            `True` if the input is valid, `False` otherwise.
    """
79
80
81
82
83
84
85
86
87
    if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
        return True
    elif is_valid_image(images):
        return True
    elif isinstance(images, list):
        return all(is_valid_image(image) for image in images)
    return False


YiYi Xu's avatar
YiYi Xu committed
88
89
class VaeImageProcessor(ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
90
    Image processor for VAE.
YiYi Xu's avatar
YiYi Xu committed
91
92
93

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
94
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
Steven Liu's avatar
Steven Liu committed
95
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
YiYi Xu's avatar
YiYi Xu committed
96
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
97
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
YiYi Xu's avatar
YiYi Xu committed
98
99
100
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
101
            Whether to normalize the image to [-1,1].
102
        do_binarize (`bool`, *optional*, defaults to `False`):
103
            Whether to binarize the image to 0/1.
104
105
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
106
107
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
YiYi Xu's avatar
YiYi Xu committed
108
109
110
111
112
113
114
115
116
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
Dhruv Nair's avatar
Dhruv Nair committed
117
        vae_latent_channels: int = 4,
YiYi Xu's avatar
YiYi Xu committed
118
119
        resample: str = "lanczos",
        do_normalize: bool = True,
120
        do_binarize: bool = False,
121
        do_convert_rgb: bool = False,
122
        do_convert_grayscale: bool = False,
YiYi Xu's avatar
YiYi Xu committed
123
124
    ):
        super().__init__()
125
126
127
128
129
130
        if do_convert_rgb and do_convert_grayscale:
            raise ValueError(
                "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
                " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
                " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
            )
YiYi Xu's avatar
YiYi Xu committed
131
132

    @staticmethod
133
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
134
        r"""
YiYi Xu's avatar
YiYi Xu committed
135
        Convert a numpy image or a batch of images to a PIL image.
136
137
138
139
140
141
142
143

        Args:
            images (`np.ndarray`):
                The image array to convert to PIL format.

        Returns:
            `List[PIL.Image.Image]`:
                A list of PIL images.
YiYi Xu's avatar
YiYi Xu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
157
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
158
        r"""
Steven Liu's avatar
Steven Liu committed
159
        Convert a PIL image or a list of PIL images to NumPy arrays.
160
161
162
163
164
165
166
167

        Args:
            images (`PIL.Image.Image` or `List[PIL.Image.Image]`):
                The PIL image or list of images to convert to NumPy format.

        Returns:
            `np.ndarray`:
                A NumPy array representation of the images.
168
169
170
171
172
173
174
175
176
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
177
    def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
178
        r"""
Steven Liu's avatar
Steven Liu committed
179
        Convert a NumPy image to a PyTorch tensor.
180
181
182
183
184
185
186
187

        Args:
            images (`np.ndarray`):
                The NumPy image array to convert to PyTorch format.

        Returns:
            `torch.Tensor`:
                A PyTorch tensor representation of the images.
YiYi Xu's avatar
YiYi Xu committed
188
189
190
191
192
193
194
195
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
196
    def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
197
        r"""
Steven Liu's avatar
Steven Liu committed
198
        Convert a PyTorch tensor to a NumPy image.
199
200
201
202
203
204
205
206

        Args:
            images (`torch.Tensor`):
                The PyTorch tensor to convert to NumPy format.

        Returns:
            `np.ndarray`:
                A NumPy array representation of the images.
YiYi Xu's avatar
YiYi Xu committed
207
208
209
210
211
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
212
    def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
213
        r"""
Steven Liu's avatar
Steven Liu committed
214
        Normalize an image array to [-1,1].
215
216
217
218
219
220
221
222

        Args:
            images (`np.ndarray` or `torch.Tensor`):
                The image array to normalize.

        Returns:
            `np.ndarray` or `torch.Tensor`:
                The normalized image array.
YiYi Xu's avatar
YiYi Xu committed
223
224
225
        """
        return 2.0 * images - 1.0

226
    @staticmethod
227
    def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
228
        r"""
Steven Liu's avatar
Steven Liu committed
229
        Denormalize an image array to [0,1].
230
231
232
233
234
235
236
237

        Args:
            images (`np.ndarray` or `torch.Tensor`):
                The image array to denormalize.

        Returns:
            `np.ndarray` or `torch.Tensor`:
                The denormalized image array.
238
239
240
        """
        return (images / 2 + 0.5).clamp(0, 1)

241
242
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
243
        r"""
244
        Converts a PIL image to RGB format.
245
246
247
248
249
250
251
252

        Args:
            image (`PIL.Image.Image`):
                The PIL image to convert to RGB.

        Returns:
            `PIL.Image.Image`:
                The RGB-converted PIL image.
253
254
        """
        image = image.convert("RGB")
255

256
257
        return image

258
259
    @staticmethod
    def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
260
261
262
263
264
265
266
267
268
269
        r"""
        Converts a given PIL image to grayscale.

        Args:
            image (`PIL.Image.Image`):
                The input image to convert.

        Returns:
            `PIL.Image.Image`:
                The image converted to grayscale.
270
271
272
273
274
        """
        image = image.convert("L")

        return image

275
276
    @staticmethod
    def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
277
        r"""
278
        Applies Gaussian blur to an image.
279
280
281
282
283
284
285
286

        Args:
            image (`PIL.Image.Image`):
                The PIL image to convert to grayscale.

        Returns:
            `PIL.Image.Image`:
                The grayscale-converted PIL image.
287
288
289
290
291
292
293
        """
        image = image.filter(ImageFilter.GaussianBlur(blur_factor))

        return image

    @staticmethod
    def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
294
        r"""
295
296
297
        Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
        ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
        processing are 512x512, the region will be expanded to 128x128.
298
299
300
301
302
303
304
305

        Args:
            mask_image (PIL.Image.Image): Mask image.
            width (int): Width of the image to be processed.
            height (int): Height of the image to be processed.
            pad (int, optional): Padding to be added to the crop region. Defaults to 0.

        Returns:
306
307
            tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
            matches the original aspect ratio.
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        """

        mask_image = mask_image.convert("L")
        mask = np.array(mask_image)

        # 1. find a rectangular region that contains all masked ares in an image
        h, w = mask.shape
        crop_left = 0
        for i in range(w):
            if not (mask[:, i] == 0).all():
                break
            crop_left += 1

        crop_right = 0
        for i in reversed(range(w)):
            if not (mask[:, i] == 0).all():
                break
            crop_right += 1

        crop_top = 0
        for i in range(h):
            if not (mask[i] == 0).all():
                break
            crop_top += 1

        crop_bottom = 0
        for i in reversed(range(h)):
            if not (mask[i] == 0).all():
                break
            crop_bottom += 1

        # 2. add padding to the crop region
        x1, y1, x2, y2 = (
            int(max(crop_left - pad, 0)),
            int(max(crop_top - pad, 0)),
            int(min(w - crop_right + pad, w)),
            int(min(h - crop_bottom + pad, h)),
        )

        # 3. expands crop region to match the aspect ratio of the image to be processed
        ratio_crop_region = (x2 - x1) / (y2 - y1)
        ratio_processing = width / height

        if ratio_crop_region > ratio_processing:
            desired_height = (x2 - x1) / ratio_processing
            desired_height_diff = int(desired_height - (y2 - y1))
            y1 -= desired_height_diff // 2
            y2 += desired_height_diff - desired_height_diff // 2
            if y2 >= mask_image.height:
                diff = y2 - mask_image.height
                y2 -= diff
                y1 -= diff
            if y1 < 0:
                y2 -= y1
                y1 -= y1
            if y2 >= mask_image.height:
                y2 = mask_image.height
        else:
            desired_width = (y2 - y1) * ratio_processing
            desired_width_diff = int(desired_width - (x2 - x1))
            x1 -= desired_width_diff // 2
            x2 += desired_width_diff - desired_width_diff // 2
            if x2 >= mask_image.width:
                diff = x2 - mask_image.width
                x2 -= diff
                x1 -= diff
            if x1 < 0:
                x2 -= x1
                x1 -= x1
            if x2 >= mask_image.width:
                x2 = mask_image.width

        return x1, y1, x2, y2

    def _resize_and_fill(
383
        self,
384
385
386
387
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
388
        r"""
389
390
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
        the image within the dimensions, filling empty with data from image.
391
392

        Args:
393
394
395
396
397
398
399
400
401
402
            image (`PIL.Image.Image`):
                The image to resize and fill.
            width (`int`):
                The width to resize the image to.
            height (`int`):
                The height to resize the image to.

        Returns:
            `PIL.Image.Image`:
                The resized and filled image.
YiYi Xu's avatar
YiYi Xu committed
403
        """
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        ratio = width / height
        src_ratio = image.width / image.height

        src_w = width if ratio < src_ratio else image.width * height // image.height
        src_h = height if ratio >= src_ratio else image.height * width // image.width

        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))

        if ratio < src_ratio:
            fill_height = height // 2 - src_h // 2
            if fill_height > 0:
                res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
                res.paste(
                    resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
                    box=(0, fill_height + src_h),
                )
        elif ratio > src_ratio:
            fill_width = width // 2 - src_w // 2
            if fill_width > 0:
                res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
                res.paste(
                    resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
                    box=(fill_width + src_w, 0),
                )

        return res

    def _resize_and_crop(
        self,
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
440
        r"""
441
442
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
        the image within the dimensions, cropping the excess.
443

444
        Args:
445
446
447
448
449
450
451
452
453
454
            image (`PIL.Image.Image`):
                The image to resize and crop.
            width (`int`):
                The width to resize the image to.
            height (`int`):
                The height to resize the image to.

        Returns:
            `PIL.Image.Image`:
                The resized and cropped image.
455
456
457
        """
        ratio = width / height
        src_ratio = image.width / image.height
458

459
460
        src_w = width if ratio > src_ratio else image.width * height // image.height
        src_h = height if ratio <= src_ratio else image.height * width // image.width
461

462
463
464
465
        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
        return res
466
467
468

    def resize(
        self,
469
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
470
471
        height: int,
        width: int,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
472
        resize_mode: str = "default",  # "default", "fill", "crop"
473
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
474
        """
475
        Resize image.
476
477
478
479

        Args:
            image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor.
480
            height (`int`):
481
                The height to resize to.
482
            width (`int`):
483
                The width to resize to.
484
485
            resize_mode (`str`, *optional*, defaults to `default`):
                The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
486
487
488
489
490
491
                within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
                will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
                then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
                the image to fit within the specified width and height, maintaining the aspect ratio, and then center
                the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
492
493
494
495

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
                The resized image.
496
        """
497
498
        if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
            raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
499
        if isinstance(image, PIL.Image.Image):
500
501
502
503
504
505
506
507
508
            if resize_mode == "default":
                image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
            elif resize_mode == "fill":
                image = self._resize_and_fill(image, width, height)
            elif resize_mode == "crop":
                image = self._resize_and_crop(image, width, height)
            else:
                raise ValueError(f"resize_mode {resize_mode} is not supported")

509
510
511
512
513
514
515
516
517
518
519
520
        elif isinstance(image, torch.Tensor):
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
        elif isinstance(image, np.ndarray):
            image = self.numpy_to_pt(image)
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
            image = self.pt_to_numpy(image)
521
        return image
YiYi Xu's avatar
YiYi Xu committed
522

523
524
    def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
        """
525
526
527
528
529
530
531
532
533
        Create a mask.

        Args:
            image (`PIL.Image.Image`):
                The image input, should be a PIL image.

        Returns:
            `PIL.Image.Image`:
                The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
534
535
536
        """
        image[image < 0.5] = 0
        image[image >= 0.5] = 1
537

538
539
        return image

540
541
542
543
544
545
    def get_default_height_width(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        height: Optional[int] = None,
        width: Optional[int] = None,
    ) -> Tuple[int, int]:
546
547
        r"""
        Returns the height and width of the image, downscaled to the next integer multiple of `vae_scale_factor`.
548
549

        Args:
550
551
552
553
554
555
556
557
558
559
560
561
562
            image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`):
                The image input, which can be a PIL image, NumPy array, or PyTorch tensor. If it is a NumPy array, it
                should have shape `[batch, height, width]` or `[batch, height, width, channels]`. If it is a PyTorch
                tensor, it should have shape `[batch, channels, height, width]`.
            height (`Optional[int]`, *optional*, defaults to `None`):
                The height of the preprocessed image. If `None`, the height of the `image` input will be used.
            width (`Optional[int]`, *optional*, defaults to `None`):
                The width of the preprocessed image. If `None`, the width of the `image` input will be used.

        Returns:
            `Tuple[int, int]`:
                A tuple containing the height and width, both resized to the nearest integer multiple of
                `vae_scale_factor`.
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        """

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[2]
            else:
                height = image.shape[1]

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[3]
            else:
                width = image.shape[2]

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor

        return height, width

YiYi Xu's avatar
YiYi Xu committed
587
588
    def preprocess(
        self,
589
        image: PipelineImageInput,
590
591
        height: Optional[int] = None,
        width: Optional[int] = None,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
592
        resize_mode: str = "default",  # "default", "fill", "crop"
593
        crops_coords: Optional[Tuple[int, int, int, int]] = None,
YiYi Xu's avatar
YiYi Xu committed
594
595
    ) -> torch.Tensor:
        """
596
597
598
        Preprocess the image input.

        Args:
599
            image (`PipelineImageInput`):
600
601
                The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
                supported formats.
602
            height (`int`, *optional*):
603
604
                The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
                height.
605
            width (`int`, *optional*):
606
                The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
607
            resize_mode (`str`, *optional*, defaults to `default`):
608
609
610
611
612
613
614
                The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
                the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
                resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
                center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
                image to fit within the specified width and height, maintaining the aspect ratio, and then center the
                image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
615
616
            crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
                The crop coordinates for each image in the batch. If `None`, will not crop the image.
617
618
619
620

        Returns:
            `torch.Tensor`:
                The preprocessed image.
YiYi Xu's avatar
YiYi Xu committed
621
622
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
623
624
625
626
627
628

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
            if isinstance(image, torch.Tensor):
                # if image is a pytorch tensor could have 2 possible shapes:
                #    1. batch x height x width: we should insert the channel dimension at position 1
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
629
                #    2. channel x height x width: we should insert batch dimension at position 0,
630
631
632
633
634
635
636
637
638
639
640
641
                #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
                #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
                image = image.unsqueeze(1)
            else:
                # if it is a numpy array, it could have 2 possible shapes:
                #   1. batch x height x width: insert channel dimension on last position
                #   2. height x width x channel: insert batch dimension on first position
                if image.shape[-1] == 1:
                    image = np.expand_dims(image, axis=0)
                else:
                    image = np.expand_dims(image, axis=-1)

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
            warnings.warn(
                "Passing `image` as a list of 4d np.ndarray is deprecated."
                "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
                FutureWarning,
            )
            image = np.concatenate(image, axis=0)
        if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
            warnings.warn(
                "Passing `image` as a list of 4d torch.Tensor is deprecated."
                "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
                FutureWarning,
            )
            image = torch.cat(image, axis=0)

        if not is_valid_image_imagelist(image):
YiYi Xu's avatar
YiYi Xu committed
658
            raise ValueError(
659
                f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
YiYi Xu's avatar
YiYi Xu committed
660
            )
661
662
        if not isinstance(image, list):
            image = [image]
YiYi Xu's avatar
YiYi Xu committed
663
664

        if isinstance(image[0], PIL.Image.Image):
665
666
667
668
669
            if crops_coords is not None:
                image = [i.crop(crops_coords) for i in image]
            if self.config.do_resize:
                height, width = self.get_default_height_width(image[0], height, width)
                image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
670
671
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
672
673
            elif self.config.do_convert_grayscale:
                image = [self.convert_to_grayscale(i) for i in image]
674
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
675
676
677
678
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
679

YiYi Xu's avatar
YiYi Xu committed
680
            image = self.numpy_to_pt(image)
681
682

            height, width = self.get_default_height_width(image, height, width)
683
684
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
685
686
687

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
688

689
690
691
692
            if self.config.do_convert_grayscale and image.ndim == 3:
                image = image.unsqueeze(1)

            channel = image.shape[1]
693
            # don't need any preprocess if the image is latents
694
            if channel == self.config.vae_latent_channels:
695
696
                return image

697
            height, width = self.get_default_height_width(image, height, width)
698
699
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
700
701

        # expected range [0,1], normalize to [-1,1]
702
        do_normalize = self.config.do_normalize
703
        if do_normalize and image.min() < 0:
YiYi Xu's avatar
YiYi Xu committed
704
705
706
707
708
709
710
711
712
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False
        if do_normalize:
            image = self.normalize(image)

713
714
715
        if self.config.do_binarize:
            image = self.binarize(image)

YiYi Xu's avatar
YiYi Xu committed
716
717
718
719
        return image

    def postprocess(
        self,
720
        image: torch.Tensor,
YiYi Xu's avatar
YiYi Xu committed
721
        output_type: str = "pil",
722
        do_denormalize: Optional[List[bool]] = None,
723
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
724
725
726
727
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
728
            image (`torch.Tensor`):
729
730
731
732
733
734
735
736
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
737
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
738
739
                The postprocessed image.
        """
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
763
764
765
766
767
768
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
769
770

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
771
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
772

773
774
775
776
777
778
779
    def apply_overlay(
        self,
        mask: PIL.Image.Image,
        init_image: PIL.Image.Image,
        image: PIL.Image.Image,
        crop_coords: Optional[Tuple[int, int, int, int]] = None,
    ) -> PIL.Image.Image:
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
        r"""
        Applies an overlay of the mask and the inpainted image on the original image.

        Args:
            mask (`PIL.Image.Image`):
                The mask image that highlights regions to overlay.
            init_image (`PIL.Image.Image`):
                The original image to which the overlay is applied.
            image (`PIL.Image.Image`):
                The image to overlay onto the original.
            crop_coords (`Tuple[int, int, int, int]`, *optional*):
                Coordinates to crop the image. If provided, the image will be cropped accordingly.

        Returns:
            `PIL.Image.Image`:
                The final image with the overlay applied.
796
797
798
799
800
801
802
803
804
805
806
807
        """

        width, height = image.width, image.height

        init_image = self.resize(init_image, width=width, height=height)
        mask = self.resize(mask, width=width, height=height)

        init_image_masked = PIL.Image.new("RGBa", (width, height))
        init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
        init_image_masked = init_image_masked.convert("RGBA")

        if crop_coords is not None:
808
809
810
            x, y, x2, y2 = crop_coords
            w = x2 - x
            h = y2 - y
811
812
813
814
815
816
817
818
819
820
821
            base_image = PIL.Image.new("RGBA", (width, height))
            image = self.resize(image, height=h, width=w, resize_mode="crop")
            base_image.paste(image, (x, y))
            image = base_image.convert("RGB")

        image = image.convert("RGBA")
        image.alpha_composite(init_image_masked)
        image = image.convert("RGB")

        return image

estelleafl's avatar
estelleafl committed
822
823
824

class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
Steven Liu's avatar
Steven Liu committed
825
    Image processor for VAE LDM3D.
estelleafl's avatar
estelleafl committed
826
827
828
829
830

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
831
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
estelleafl's avatar
estelleafl committed
832
833
834
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
835
            Whether to normalize the image to [-1,1].
estelleafl's avatar
estelleafl committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
851
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
852
853
854
855
856
857
858
859
860
861
        r"""
        Convert a NumPy image or a batch of images to a list of PIL images.

        Args:
            images (`np.ndarray`):
                The input NumPy array of images, which can be a single image or a batch.

        Returns:
            `List[PIL.Image.Image]`:
                A list of PIL images converted from the input NumPy array.
estelleafl's avatar
estelleafl committed
862
863
864
865
866
867
868
869
870
871
872
873
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

874
875
    @staticmethod
    def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
876
        r"""
877
        Convert a PIL image or a list of PIL images to NumPy arrays.
878
879
880
881
882
883
884
885

        Args:
            images (`Union[List[PIL.Image.Image], PIL.Image.Image]`):
                The input image or list of images to be converted.

        Returns:
            `np.ndarray`:
                A NumPy array of the converted images.
886
887
888
889
890
891
892
893
        """
        if not isinstance(images, list):
            images = [images]

        images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
        images = np.stack(images, axis=0)
        return images

estelleafl's avatar
estelleafl committed
894
    @staticmethod
895
    def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
896
897
        r"""
        Convert an RGB-like depth image to a depth map.
estelleafl's avatar
estelleafl committed
898

899
900
901
        Args:
            image (`Union[np.ndarray, torch.Tensor]`):
                The RGB-like depth image to convert.
estelleafl's avatar
estelleafl committed
902

903
904
905
        Returns:
            `Union[np.ndarray, torch.Tensor]`:
                The corresponding depth map.
estelleafl's avatar
estelleafl committed
906
907
908
        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

909
    def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
910
911
912
913
914
915
916
917
918
919
        r"""
        Convert a NumPy depth image or a batch of images to a list of PIL images.

        Args:
            images (`np.ndarray`):
                The input NumPy array of depth images, which can be a single image or a batch.

        Returns:
            `List[PIL.Image.Image]`:
                A list of PIL images converted from the input NumPy depth images.
estelleafl's avatar
estelleafl committed
920
921
922
        """
        if images.ndim == 3:
            images = images[None, ...]
923
924
925
926
927
928
929
930
931
        images_depth = images[:, :, :, 3:]
        if images.shape[-1] == 6:
            images_depth = (images_depth * 255).round().astype("uint8")
            pil_images = [
                Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
            ]
        elif images.shape[-1] == 4:
            images_depth = (images_depth * 65535.0).astype(np.uint16)
            pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
estelleafl's avatar
estelleafl committed
932
        else:
933
            raise Exception("Not supported")
estelleafl's avatar
estelleafl committed
934
935
936
937
938

        return pil_images

    def postprocess(
        self,
939
        image: torch.Tensor,
estelleafl's avatar
estelleafl committed
940
941
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
942
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
943
944
945
946
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
947
            image (`torch.Tensor`):
948
949
950
951
952
953
954
955
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
956
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
957
958
                The postprocessed image.
        """
estelleafl's avatar
estelleafl committed
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
981
982
983
984
985
            if image.shape[-1] == 6:
                image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
            else:
                image_depth = image[:, :, :, 3:]
            return image[:, :, :, :3], image_depth
estelleafl's avatar
estelleafl committed
986
987
988
989
990

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")
991
992
993

    def preprocess(
        self,
994
995
        rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
        depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
996
997
998
999
        height: Optional[int] = None,
        width: Optional[int] = None,
        target_res: Optional[int] = None,
    ) -> torch.Tensor:
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        r"""
        Preprocess the image input. Accepted formats are PIL images, NumPy arrays, or PyTorch tensors.

        Args:
            rgb (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`):
                The RGB input image, which can be a single image or a batch.
            depth (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`):
                The depth input image, which can be a single image or a batch.
            height (`Optional[int]`, *optional*, defaults to `None`):
                The desired height of the processed image. If `None`, defaults to the height of the input image.
            width (`Optional[int]`, *optional*, defaults to `None`):
                The desired width of the processed image. If `None`, defaults to the width of the input image.
            target_res (`Optional[int]`, *optional*, defaults to `None`):
                Target resolution for resizing the images. If specified, overrides height and width.

        Returns:
            `Tuple[torch.Tensor, torch.Tensor]`:
                A tuple containing the processed RGB and depth images as PyTorch tensors.
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
            raise Exception("This is not yet supported")

        if isinstance(rgb, supported_formats):
            rgb = [rgb]
            depth = [depth]
        elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(rgb[0], PIL.Image.Image):
            if self.config.do_convert_rgb:
                raise Exception("This is not yet supported")
                # rgb = [self.convert_to_rgb(i) for i in rgb]
                # depth = [self.convert_to_depth(i) for i in depth]  #TODO define convert_to_depth
            if self.config.do_resize or target_res:
                height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
                rgb = [self.resize(i, height, width) for i in rgb]
                depth = [self.resize(i, height, width) for i in depth]
            rgb = self.pil_to_numpy(rgb)  # to np
            rgb = self.numpy_to_pt(rgb)  # to pt

            depth = self.depth_pil_to_numpy(depth)  # to np
            depth = self.numpy_to_pt(depth)  # to pt

        elif isinstance(rgb[0], np.ndarray):
            rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
            rgb = self.numpy_to_pt(rgb)
            height, width = self.get_default_height_width(rgb, height, width)
            if self.config.do_resize:
                rgb = self.resize(rgb, height, width)

            depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
            depth = self.numpy_to_pt(depth)
            height, width = self.get_default_height_width(depth, height, width)
            if self.config.do_resize:
                depth = self.resize(depth, height, width)

        elif isinstance(rgb[0], torch.Tensor):
            raise Exception("This is not yet supported")
            # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)

            # if self.config.do_convert_grayscale and rgb.ndim == 3:
            #     rgb = rgb.unsqueeze(1)

            # channel = rgb.shape[1]

            # height, width = self.get_default_height_width(rgb, height, width)
            # if self.config.do_resize:
            #     rgb = self.resize(rgb, height, width)

            # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)

            # if self.config.do_convert_grayscale and depth.ndim == 3:
            #     depth = depth.unsqueeze(1)

            # channel = depth.shape[1]
            # # don't need any preprocess if the image is latents
            # if depth == 4:
            #     return rgb, depth

            # height, width = self.get_default_height_width(depth, height, width)
            # if self.config.do_resize:
            #     depth = self.resize(depth, height, width)
        # expected range [0,1], normalize to [-1,1]
        do_normalize = self.config.do_normalize
        if rgb.min() < 0 and do_normalize:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            rgb = self.normalize(rgb)
            depth = self.normalize(depth)

        if self.config.do_binarize:
            rgb = self.binarize(rgb)
            depth = self.binarize(depth)

        return rgb, depth
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149


class IPAdapterMaskProcessor(VaeImageProcessor):
    """
    Image processor for IP Adapter image masks.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `False`):
            Whether to normalize the image to [-1,1].
        do_binarize (`bool`, *optional*, defaults to `True`):
            Whether to binarize the image to 0/1.
        do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
            Whether to convert the images to grayscale format.

    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = False,
        do_binarize: bool = True,
        do_convert_grayscale: bool = True,
    ):
        super().__init__(
            do_resize=do_resize,
            vae_scale_factor=vae_scale_factor,
            resample=resample,
            do_normalize=do_normalize,
            do_binarize=do_binarize,
            do_convert_grayscale=do_convert_grayscale,
        )

    @staticmethod
1150
    def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int):
1151
        """
1152
1153
        Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the
        aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
1154
1155

        Args:
1156
            mask (`torch.Tensor`):
1157
1158
1159
1160
1161
1162
1163
1164
1165
                The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
            batch_size (`int`):
                The batch size.
            num_queries (`int`):
                The number of queries.
            value_embed_dim (`int`):
                The dimensionality of the value embeddings.

        Returns:
1166
            `torch.Tensor`:
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
                The downsampled mask tensor.

        """
        o_h = mask.shape[1]
        o_w = mask.shape[2]
        ratio = o_w / o_h
        mask_h = int(math.sqrt(num_queries / ratio))
        mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
        mask_w = num_queries // mask_h

        mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)

        # Repeat batch_size times
        if mask_downsample.shape[0] < batch_size:
            mask_downsample = mask_downsample.repeat(batch_size, 1, 1)

        mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)

        downsampled_area = mask_h * mask_w
        # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
        # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
        if downsampled_area < num_queries:
            warnings.warn(
                "The aspect ratio of the mask does not match the aspect ratio of the output image. "
                "Please update your masks or adjust the output size for optimal performance.",
                UserWarning,
            )
            mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
        # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
        if downsampled_area > num_queries:
            warnings.warn(
                "The aspect ratio of the mask does not match the aspect ratio of the output image. "
                "Please update your masks or adjust the output size for optimal performance.",
                UserWarning,
            )
            mask_downsample = mask_downsample[:, :num_queries]

        # Repeat last dimension to match SDPA output shape
        mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
            1, 1, value_embed_dim
        )

        return mask_downsample
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254


class PixArtImageProcessor(VaeImageProcessor):
    """
    Image processor for PixArt image resize and crop.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1].
        do_binarize (`bool`, *optional*, defaults to `False`):
            Whether to binarize the image to 0/1.
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
    """

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
        do_binarize: bool = False,
        do_convert_grayscale: bool = False,
    ):
        super().__init__(
            do_resize=do_resize,
            vae_scale_factor=vae_scale_factor,
            resample=resample,
            do_normalize=do_normalize,
            do_binarize=do_binarize,
            do_convert_grayscale=do_convert_grayscale,
        )

    @staticmethod
    def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
        r"""
        Returns the binned height and width based on the aspect ratio.

        Args:
            height (`int`): The height of the image.
            width (`int`): The width of the image.
            ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width).

        Returns:
            `Tuple[int, int]`: The closest binned height and width.
        """
1266
1267
1268
1269
1270
1271
1272
        ar = float(height / width)
        closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
        default_hw = ratios[closest_ratio]
        return int(default_hw[0]), int(default_hw[1])

    @staticmethod
    def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
        r"""
        Resizes and crops a tensor of images to the specified dimensions.

        Args:
            samples (`torch.Tensor`):
                A tensor of shape (N, C, H, W) where N is the batch size, C is the number of channels, H is the height,
                and W is the width.
            new_width (`int`): The desired width of the output images.
            new_height (`int`): The desired height of the output images.

        Returns:
            `torch.Tensor`: A tensor containing the resized and cropped images.
        """
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
        orig_height, orig_width = samples.shape[2], samples.shape[3]

        # Check if resizing is needed
        if orig_height != new_height or orig_width != new_width:
            ratio = max(new_height / orig_height, new_width / orig_width)
            resized_width = int(orig_width * ratio)
            resized_height = int(orig_height * ratio)

            # Resize
            samples = F.interpolate(
                samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
            )

            # Center Crop
            start_x = (resized_width - new_width) // 2
            end_x = start_x + new_width
            start_y = (resized_height - new_height) // 2
            end_y = start_y + new_height
            samples = samples[:, :, start_y:end_y, start_x:end_x]

        return samples