image_processor.py 39.8 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
YiYi Xu's avatar
YiYi Xu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
YiYi Xu's avatar
YiYi Xu committed
16
import warnings
17
from typing import List, Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
18
19

import numpy as np
Anh71me's avatar
Anh71me committed
20
import PIL.Image
YiYi Xu's avatar
YiYi Xu committed
21
import torch
22
import torch.nn.functional as F
23
from PIL import Image, ImageFilter, ImageOps
YiYi Xu's avatar
YiYi Xu committed
24
25

from .configuration_utils import ConfigMixin, register_to_config
26
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
27
28


29
30
31
32
33
34
35
36
37
PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
    torch.FloatTensor,
    List[PIL.Image.Image],
    List[np.ndarray],
    List[torch.FloatTensor],
]

38
PipelineDepthInput = PipelineImageInput
39

40

YiYi Xu's avatar
YiYi Xu committed
41
42
class VaeImageProcessor(ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
43
    Image processor for VAE.
YiYi Xu's avatar
YiYi Xu committed
44
45
46

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
47
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
Steven Liu's avatar
Steven Liu committed
48
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
YiYi Xu's avatar
YiYi Xu committed
49
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
50
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
YiYi Xu's avatar
YiYi Xu committed
51
52
53
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
54
            Whether to normalize the image to [-1,1].
55
        do_binarize (`bool`, *optional*, defaults to `False`):
56
            Whether to binarize the image to 0/1.
57
58
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
59
60
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
YiYi Xu's avatar
YiYi Xu committed
61
62
63
64
65
66
67
68
69
70
71
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
72
        do_binarize: bool = False,
73
        do_convert_rgb: bool = False,
74
        do_convert_grayscale: bool = False,
YiYi Xu's avatar
YiYi Xu committed
75
76
    ):
        super().__init__()
77
78
79
80
81
82
83
        if do_convert_rgb and do_convert_grayscale:
            raise ValueError(
                "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
                " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
                " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
            )
            self.config.do_convert_rgb = False
YiYi Xu's avatar
YiYi Xu committed
84
85

    @staticmethod
86
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
YiYi Xu's avatar
YiYi Xu committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
102
103
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
Steven Liu's avatar
Steven Liu committed
104
        Convert a PIL image or a list of PIL images to NumPy arrays.
105
106
107
108
109
110
111
112
113
114
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
    def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
115
        """
Steven Liu's avatar
Steven Liu committed
116
        Convert a NumPy image to a PyTorch tensor.
YiYi Xu's avatar
YiYi Xu committed
117
118
119
120
121
122
123
124
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
125
    def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
YiYi Xu's avatar
YiYi Xu committed
126
        """
Steven Liu's avatar
Steven Liu committed
127
        Convert a PyTorch tensor to a NumPy image.
YiYi Xu's avatar
YiYi Xu committed
128
129
130
131
132
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
133
    def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
YiYi Xu's avatar
YiYi Xu committed
134
        """
Steven Liu's avatar
Steven Liu committed
135
        Normalize an image array to [-1,1].
YiYi Xu's avatar
YiYi Xu committed
136
137
138
        """
        return 2.0 * images - 1.0

139
    @staticmethod
140
    def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
141
        """
Steven Liu's avatar
Steven Liu committed
142
        Denormalize an image array to [0,1].
143
144
145
        """
        return (images / 2 + 0.5).clamp(0, 1)

146
147
148
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
        """
149
        Converts a PIL image to RGB format.
150
151
        """
        image = image.convert("RGB")
152

153
154
        return image

155
156
157
158
159
160
161
162
163
    @staticmethod
    def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
        """
        Converts a PIL image to grayscale format.
        """
        image = image.convert("L")

        return image

164
165
166
    @staticmethod
    def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
        """
167
        Applies Gaussian blur to an image.
168
169
170
171
172
173
174
175
        """
        image = image.filter(ImageFilter.GaussianBlur(blur_factor))

        return image

    @staticmethod
    def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
        """
176
177
178
        Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
        ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
        processing are 512x512, the region will be expanded to 128x128.
179
180
181
182
183
184
185
186

        Args:
            mask_image (PIL.Image.Image): Mask image.
            width (int): Width of the image to be processed.
            height (int): Height of the image to be processed.
            pad (int, optional): Padding to be added to the crop region. Defaults to 0.

        Returns:
187
188
            tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
            matches the original aspect ratio.
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        """

        mask_image = mask_image.convert("L")
        mask = np.array(mask_image)

        # 1. find a rectangular region that contains all masked ares in an image
        h, w = mask.shape
        crop_left = 0
        for i in range(w):
            if not (mask[:, i] == 0).all():
                break
            crop_left += 1

        crop_right = 0
        for i in reversed(range(w)):
            if not (mask[:, i] == 0).all():
                break
            crop_right += 1

        crop_top = 0
        for i in range(h):
            if not (mask[i] == 0).all():
                break
            crop_top += 1

        crop_bottom = 0
        for i in reversed(range(h)):
            if not (mask[i] == 0).all():
                break
            crop_bottom += 1

        # 2. add padding to the crop region
        x1, y1, x2, y2 = (
            int(max(crop_left - pad, 0)),
            int(max(crop_top - pad, 0)),
            int(min(w - crop_right + pad, w)),
            int(min(h - crop_bottom + pad, h)),
        )

        # 3. expands crop region to match the aspect ratio of the image to be processed
        ratio_crop_region = (x2 - x1) / (y2 - y1)
        ratio_processing = width / height

        if ratio_crop_region > ratio_processing:
            desired_height = (x2 - x1) / ratio_processing
            desired_height_diff = int(desired_height - (y2 - y1))
            y1 -= desired_height_diff // 2
            y2 += desired_height_diff - desired_height_diff // 2
            if y2 >= mask_image.height:
                diff = y2 - mask_image.height
                y2 -= diff
                y1 -= diff
            if y1 < 0:
                y2 -= y1
                y1 -= y1
            if y2 >= mask_image.height:
                y2 = mask_image.height
        else:
            desired_width = (y2 - y1) * ratio_processing
            desired_width_diff = int(desired_width - (x2 - x1))
            x1 -= desired_width_diff // 2
            x2 += desired_width_diff - desired_width_diff // 2
            if x2 >= mask_image.width:
                diff = x2 - mask_image.width
                x2 -= diff
                x1 -= diff
            if x1 < 0:
                x2 -= x1
                x1 -= x1
            if x2 >= mask_image.width:
                x2 = mask_image.width

        return x1, y1, x2, y2

    def _resize_and_fill(
264
        self,
265
266
267
268
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
269
        """
270
271
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
        the image within the dimensions, filling empty with data from image.
272
273

        Args:
274
275
276
            image: The image to resize.
            width: The width to resize the image to.
            height: The height to resize the image to.
YiYi Xu's avatar
YiYi Xu committed
277
        """
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        ratio = width / height
        src_ratio = image.width / image.height

        src_w = width if ratio < src_ratio else image.width * height // image.height
        src_h = height if ratio >= src_ratio else image.height * width // image.width

        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))

        if ratio < src_ratio:
            fill_height = height // 2 - src_h // 2
            if fill_height > 0:
                res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
                res.paste(
                    resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
                    box=(0, fill_height + src_h),
                )
        elif ratio > src_ratio:
            fill_width = width // 2 - src_w // 2
            if fill_width > 0:
                res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
                res.paste(
                    resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
                    box=(fill_width + src_w, 0),
                )

        return res

    def _resize_and_crop(
        self,
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
        """
315
316
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
        the image within the dimensions, cropping the excess.
317

318
319
320
321
322
323
324
        Args:
            image: The image to resize.
            width: The width to resize the image to.
            height: The height to resize the image to.
        """
        ratio = width / height
        src_ratio = image.width / image.height
325

326
327
        src_w = width if ratio > src_ratio else image.width * height // image.height
        src_h = height if ratio <= src_ratio else image.height * width // image.width
328

329
330
331
332
        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
        return res
333
334
335

    def resize(
        self,
336
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
337
338
        height: int,
        width: int,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
339
        resize_mode: str = "default",  # "default", "fill", "crop"
340
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
341
        """
342
        Resize image.
343
344
345
346

        Args:
            image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor.
347
            height (`int`):
348
                The height to resize to.
349
            width (`int`):
350
                The width to resize to.
351
352
            resize_mode (`str`, *optional*, defaults to `default`):
                The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
353
354
355
356
357
358
                within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
                will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
                then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
                the image to fit within the specified width and height, maintaining the aspect ratio, and then center
                the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
359
360
361
362

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
                The resized image.
363
        """
364
365
        if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
            raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
366
        if isinstance(image, PIL.Image.Image):
367
368
369
370
371
372
373
374
375
            if resize_mode == "default":
                image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
            elif resize_mode == "fill":
                image = self._resize_and_fill(image, width, height)
            elif resize_mode == "crop":
                image = self._resize_and_crop(image, width, height)
            else:
                raise ValueError(f"resize_mode {resize_mode} is not supported")

376
377
378
379
380
381
382
383
384
385
386
387
        elif isinstance(image, torch.Tensor):
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
        elif isinstance(image, np.ndarray):
            image = self.numpy_to_pt(image)
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
            image = self.pt_to_numpy(image)
388
        return image
YiYi Xu's avatar
YiYi Xu committed
389

390
391
    def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
        """
392
393
394
395
396
397
398
399
400
        Create a mask.

        Args:
            image (`PIL.Image.Image`):
                The image input, should be a PIL image.

        Returns:
            `PIL.Image.Image`:
                The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
401
402
403
        """
        image[image < 0.5] = 0
        image[image >= 0.5] = 1
404

405
406
        return image

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    def get_default_height_width(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        height: Optional[int] = None,
        width: Optional[int] = None,
    ) -> Tuple[int, int]:
        """
        This function return the height and width that are downscaled to the next integer multiple of
        `vae_scale_factor`.

        Args:
            image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
                shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
                have shape `[batch, channel, height, width]`.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the height of `image` input.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use the width of the `image` input.
        """

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[2]
            else:
                height = image.shape[1]

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[3]
            else:
                width = image.shape[2]

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor

        return height, width

YiYi Xu's avatar
YiYi Xu committed
450
451
    def preprocess(
        self,
452
        image: PipelineImageInput,
453
454
        height: Optional[int] = None,
        width: Optional[int] = None,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
455
        resize_mode: str = "default",  # "default", "fill", "crop"
456
        crops_coords: Optional[Tuple[int, int, int, int]] = None,
YiYi Xu's avatar
YiYi Xu committed
457
458
    ) -> torch.Tensor:
        """
459
460
461
462
        Preprocess the image input.

        Args:
            image (`pipeline_image_input`):
463
464
                The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
                supported formats.
465
            height (`int`, *optional*, defaults to `None`):
466
467
                The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
                height.
468
            width (`int`, *optional*`, defaults to `None`):
469
                The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
470
            resize_mode (`str`, *optional*, defaults to `default`):
471
472
473
474
475
476
477
                The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
                the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
                resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
                center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
                image to fit within the specified width and height, maintaining the aspect ratio, and then center the
                image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
478
479
            crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
                The crop coordinates for each image in the batch. If `None`, will not crop the image.
YiYi Xu's avatar
YiYi Xu committed
480
481
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
482
483
484
485
486
487

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
            if isinstance(image, torch.Tensor):
                # if image is a pytorch tensor could have 2 possible shapes:
                #    1. batch x height x width: we should insert the channel dimension at position 1
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
488
                #    2. channel x height x width: we should insert batch dimension at position 0,
489
490
491
492
493
494
495
496
497
498
499
500
                #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
                #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
                image = image.unsqueeze(1)
            else:
                # if it is a numpy array, it could have 2 possible shapes:
                #   1. batch x height x width: insert channel dimension on last position
                #   2. height x width x channel: insert batch dimension on first position
                if image.shape[-1] == 1:
                    image = np.expand_dims(image, axis=0)
                else:
                    image = np.expand_dims(image, axis=-1)

YiYi Xu's avatar
YiYi Xu committed
501
502
503
504
505
506
507
508
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
509
510
511
512
513
            if crops_coords is not None:
                image = [i.crop(crops_coords) for i in image]
            if self.config.do_resize:
                height, width = self.get_default_height_width(image[0], height, width)
                image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
514
515
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
516
517
            elif self.config.do_convert_grayscale:
                image = [self.convert_to_grayscale(i) for i in image]
518
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
519
520
521
522
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
523

YiYi Xu's avatar
YiYi Xu committed
524
            image = self.numpy_to_pt(image)
525
526

            height, width = self.get_default_height_width(image, height, width)
527
528
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
529
530
531

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
532

533
534
535
536
            if self.config.do_convert_grayscale and image.ndim == 3:
                image = image.unsqueeze(1)

            channel = image.shape[1]
537
538
539
540
            # don't need any preprocess if the image is latents
            if channel == 4:
                return image

541
            height, width = self.get_default_height_width(image, height, width)
542
543
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
544
545

        # expected range [0,1], normalize to [-1,1]
546
        do_normalize = self.config.do_normalize
547
        if do_normalize and image.min() < 0:
YiYi Xu's avatar
YiYi Xu committed
548
549
550
551
552
553
554
555
556
557
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

558
559
560
        if self.config.do_binarize:
            image = self.binarize(image)

YiYi Xu's avatar
YiYi Xu committed
561
562
563
564
        return image

    def postprocess(
        self,
565
        image: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
566
        output_type: str = "pil",
567
        do_denormalize: Optional[List[bool]] = None,
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
            image (`torch.FloatTensor`):
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
                The postprocessed image.
        """
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
608
609
610
611
612
613
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
614
615

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
616
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
617

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    def apply_overlay(
        self,
        mask: PIL.Image.Image,
        init_image: PIL.Image.Image,
        image: PIL.Image.Image,
        crop_coords: Optional[Tuple[int, int, int, int]] = None,
    ) -> PIL.Image.Image:
        """
        overlay the inpaint output to the original image
        """

        width, height = image.width, image.height

        init_image = self.resize(init_image, width=width, height=height)
        mask = self.resize(mask, width=width, height=height)

        init_image_masked = PIL.Image.new("RGBa", (width, height))
        init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
        init_image_masked = init_image_masked.convert("RGBA")

        if crop_coords is not None:
639
640
641
            x, y, x2, y2 = crop_coords
            w = x2 - x
            h = y2 - y
642
643
644
645
646
647
648
649
650
651
652
            base_image = PIL.Image.new("RGBA", (width, height))
            image = self.resize(image, height=h, width=w, resize_mode="crop")
            base_image.paste(image, (x, y))
            image = base_image.convert("RGB")

        image = image.convert("RGBA")
        image.alpha_composite(init_image_masked)
        image = image.convert("RGB")

        return image

estelleafl's avatar
estelleafl committed
653
654
655

class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
Steven Liu's avatar
Steven Liu committed
656
    Image processor for VAE LDM3D.
estelleafl's avatar
estelleafl committed
657
658
659
660
661

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
662
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
estelleafl's avatar
estelleafl committed
663
664
665
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
666
            Whether to normalize the image to [-1,1].
estelleafl's avatar
estelleafl committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
682
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
683
        """
Steven Liu's avatar
Steven Liu committed
684
        Convert a NumPy image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
685
686
687
688
689
690
691
692
693
694
695
696
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

697
698
699
700
701
702
703
704
705
706
707
708
    @staticmethod
    def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
        Convert a PIL image or a list of PIL images to NumPy arrays.
        """
        if not isinstance(images, list):
            images = [images]

        images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
        images = np.stack(images, axis=0)
        return images

estelleafl's avatar
estelleafl committed
709
    @staticmethod
710
    def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
estelleafl's avatar
estelleafl committed
711
712
713
714
715
716
717
718
719
        """
        Args:
            image: RGB-like depth image

        Returns: depth map

        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

720
    def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
721
        """
Steven Liu's avatar
Steven Liu committed
722
        Convert a NumPy depth image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
723
724
725
        """
        if images.ndim == 3:
            images = images[None, ...]
726
727
728
729
730
731
732
733
734
        images_depth = images[:, :, :, 3:]
        if images.shape[-1] == 6:
            images_depth = (images_depth * 255).round().astype("uint8")
            pil_images = [
                Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
            ]
        elif images.shape[-1] == 4:
            images_depth = (images_depth * 65535.0).astype(np.uint16)
            pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
estelleafl's avatar
estelleafl committed
735
        else:
736
            raise Exception("Not supported")
estelleafl's avatar
estelleafl committed
737
738
739
740
741
742
743
744

        return pil_images

    def postprocess(
        self,
        image: torch.FloatTensor,
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
            image (`torch.FloatTensor`):
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
                The postprocessed image.
        """
estelleafl's avatar
estelleafl committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
784
785
786
787
788
            if image.shape[-1] == 6:
                image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
            else:
                image_depth = image[:, :, :, 3:]
            return image[:, :, :, :3], image_depth
estelleafl's avatar
estelleafl committed
789
790
791
792
793

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

    def preprocess(
        self,
        rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
        depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
        height: Optional[int] = None,
        width: Optional[int] = None,
        target_res: Optional[int] = None,
    ) -> torch.Tensor:
        """
        Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
            raise Exception("This is not yet supported")

        if isinstance(rgb, supported_formats):
            rgb = [rgb]
            depth = [depth]
        elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(rgb[0], PIL.Image.Image):
            if self.config.do_convert_rgb:
                raise Exception("This is not yet supported")
                # rgb = [self.convert_to_rgb(i) for i in rgb]
                # depth = [self.convert_to_depth(i) for i in depth]  #TODO define convert_to_depth
            if self.config.do_resize or target_res:
                height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
                rgb = [self.resize(i, height, width) for i in rgb]
                depth = [self.resize(i, height, width) for i in depth]
            rgb = self.pil_to_numpy(rgb)  # to np
            rgb = self.numpy_to_pt(rgb)  # to pt

            depth = self.depth_pil_to_numpy(depth)  # to np
            depth = self.numpy_to_pt(depth)  # to pt

        elif isinstance(rgb[0], np.ndarray):
            rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
            rgb = self.numpy_to_pt(rgb)
            height, width = self.get_default_height_width(rgb, height, width)
            if self.config.do_resize:
                rgb = self.resize(rgb, height, width)

            depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
            depth = self.numpy_to_pt(depth)
            height, width = self.get_default_height_width(depth, height, width)
            if self.config.do_resize:
                depth = self.resize(depth, height, width)

        elif isinstance(rgb[0], torch.Tensor):
            raise Exception("This is not yet supported")
            # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)

            # if self.config.do_convert_grayscale and rgb.ndim == 3:
            #     rgb = rgb.unsqueeze(1)

            # channel = rgb.shape[1]

            # height, width = self.get_default_height_width(rgb, height, width)
            # if self.config.do_resize:
            #     rgb = self.resize(rgb, height, width)

            # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)

            # if self.config.do_convert_grayscale and depth.ndim == 3:
            #     depth = depth.unsqueeze(1)

            # channel = depth.shape[1]
            # # don't need any preprocess if the image is latents
            # if depth == 4:
            #     return rgb, depth

            # height, width = self.get_default_height_width(depth, height, width)
            # if self.config.do_resize:
            #     depth = self.resize(depth, height, width)
        # expected range [0,1], normalize to [-1,1]
        do_normalize = self.config.do_normalize
        if rgb.min() < 0 and do_normalize:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            rgb = self.normalize(rgb)
            depth = self.normalize(depth)

        if self.config.do_binarize:
            rgb = self.binarize(rgb)
            depth = self.binarize(depth)

        return rgb, depth
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938


class IPAdapterMaskProcessor(VaeImageProcessor):
    """
    Image processor for IP Adapter image masks.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `False`):
            Whether to normalize the image to [-1,1].
        do_binarize (`bool`, *optional*, defaults to `True`):
            Whether to binarize the image to 0/1.
        do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
            Whether to convert the images to grayscale format.

    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = False,
        do_binarize: bool = True,
        do_convert_grayscale: bool = True,
    ):
        super().__init__(
            do_resize=do_resize,
            vae_scale_factor=vae_scale_factor,
            resample=resample,
            do_normalize=do_normalize,
            do_binarize=do_binarize,
            do_convert_grayscale=do_convert_grayscale,
        )

    @staticmethod
    def downsample(mask: torch.FloatTensor, batch_size: int, num_queries: int, value_embed_dim: int):
        """
939
940
        Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the
        aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

        Args:
            mask (`torch.FloatTensor`):
                The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
            batch_size (`int`):
                The batch size.
            num_queries (`int`):
                The number of queries.
            value_embed_dim (`int`):
                The dimensionality of the value embeddings.

        Returns:
            `torch.FloatTensor`:
                The downsampled mask tensor.

        """
        o_h = mask.shape[1]
        o_w = mask.shape[2]
        ratio = o_w / o_h
        mask_h = int(math.sqrt(num_queries / ratio))
        mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
        mask_w = num_queries // mask_h

        mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)

        # Repeat batch_size times
        if mask_downsample.shape[0] < batch_size:
            mask_downsample = mask_downsample.repeat(batch_size, 1, 1)

        mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)

        downsampled_area = mask_h * mask_w
        # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
        # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
        if downsampled_area < num_queries:
            warnings.warn(
                "The aspect ratio of the mask does not match the aspect ratio of the output image. "
                "Please update your masks or adjust the output size for optimal performance.",
                UserWarning,
            )
            mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
        # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
        if downsampled_area > num_queries:
            warnings.warn(
                "The aspect ratio of the mask does not match the aspect ratio of the output image. "
                "Please update your masks or adjust the output size for optimal performance.",
                UserWarning,
            )
            mask_downsample = mask_downsample[:, :num_queries]

        # Repeat last dimension to match SDPA output shape
        mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
            1, 1, value_embed_dim
        )

        return mask_downsample