"src/diffusers/utils/dummy_note_seq_objects.py" did not exist on "836f3f35c2453537ec86b3262c8c197c5d4a2767"
image_processor.py 17.6 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
16
from typing import List, Optional, Union
YiYi Xu's avatar
YiYi Xu committed
17
18

import numpy as np
Anh71me's avatar
Anh71me committed
19
import PIL.Image
YiYi Xu's avatar
YiYi Xu committed
20
21
22
23
import torch
from PIL import Image

from .configuration_utils import ConfigMixin, register_to_config
24
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
25
26


27
28
29
30
31
32
33
34
35
36
PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
    torch.FloatTensor,
    List[PIL.Image.Image],
    List[np.ndarray],
    List[torch.FloatTensor],
]


YiYi Xu's avatar
YiYi Xu committed
37
38
class VaeImageProcessor(ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
39
    Image processor for VAE.
YiYi Xu's avatar
YiYi Xu committed
40
41
42

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
43
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
Steven Liu's avatar
Steven Liu committed
44
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
YiYi Xu's avatar
YiYi Xu committed
45
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
46
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
YiYi Xu's avatar
YiYi Xu committed
47
48
49
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
50
            Whether to normalize the image to [-1,1].
51
52
        do_binarize (`bool`, *optional*, defaults to `True`):
            Whether to binarize the image to 0/1.
53
54
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
55
56
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
YiYi Xu's avatar
YiYi Xu committed
57
58
59
60
61
62
63
64
65
66
67
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
68
        do_binarize: bool = False,
69
        do_convert_rgb: bool = False,
70
        do_convert_grayscale: bool = False,
YiYi Xu's avatar
YiYi Xu committed
71
72
    ):
        super().__init__()
73
74
75
76
77
78
79
        if do_convert_rgb and do_convert_grayscale:
            raise ValueError(
                "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
                " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
                " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
            )
            self.config.do_convert_rgb = False
YiYi Xu's avatar
YiYi Xu committed
80
81

    @staticmethod
82
    def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
98
99
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
Steven Liu's avatar
Steven Liu committed
100
        Convert a PIL image or a list of PIL images to NumPy arrays.
101
102
103
104
105
106
107
108
109
110
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
    def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
111
        """
Steven Liu's avatar
Steven Liu committed
112
        Convert a NumPy image to a PyTorch tensor.
YiYi Xu's avatar
YiYi Xu committed
113
114
115
116
117
118
119
120
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
121
    def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
YiYi Xu's avatar
YiYi Xu committed
122
        """
Steven Liu's avatar
Steven Liu committed
123
        Convert a PyTorch tensor to a NumPy image.
YiYi Xu's avatar
YiYi Xu committed
124
125
126
127
128
129
130
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
    def normalize(images):
        """
Steven Liu's avatar
Steven Liu committed
131
        Normalize an image array to [-1,1].
YiYi Xu's avatar
YiYi Xu committed
132
133
134
        """
        return 2.0 * images - 1.0

135
136
137
    @staticmethod
    def denormalize(images):
        """
Steven Liu's avatar
Steven Liu committed
138
        Denormalize an image array to [0,1].
139
140
141
        """
        return (images / 2 + 0.5).clamp(0, 1)

142
143
144
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
        """
145
        Converts a PIL image to RGB format.
146
147
        """
        image = image.convert("RGB")
148

149
150
        return image

151
152
153
154
155
156
157
158
159
160
    @staticmethod
    def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
        """
        Converts a PIL image to grayscale format.
        """
        image = image.convert("L")

        return image

    def get_default_height_width(
161
        self,
162
        image: [PIL.Image.Image, np.ndarray, torch.Tensor],
163
164
        height: Optional[int] = None,
        width: Optional[int] = None,
165
    ):
YiYi Xu's avatar
YiYi Xu committed
166
        """
167
168
169
170
171
172
173
174
175
176
177
178
        This function return the height and width that are downscaled to the next integer multiple of
        `vae_scale_factor`.

        Args:
            image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
                shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
                have shape `[batch, channel, height, width]`.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the height of `image` input.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use the width of the `image` input.
YiYi Xu's avatar
YiYi Xu committed
179
        """
180

181
        if height is None:
182
183
184
185
186
187
188
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[2]
            else:
                height = image.shape[1]

189
        if width is None:
190
191
192
193
194
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[3]
            else:
195
                width = image.shape[2]
196
197
198
199

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor
200
201
202
203
204

        return height, width

    def resize(
        self,
205
        image: [PIL.Image.Image, np.ndarray, torch.Tensor],
206
207
        height: Optional[int] = None,
        width: Optional[int] = None,
208
    ) -> [PIL.Image.Image, np.ndarray, torch.Tensor]:
209
        """
210
        Resize image.
211
        """
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        if isinstance(image, PIL.Image.Image):
            image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
        elif isinstance(image, torch.Tensor):
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
        elif isinstance(image, np.ndarray):
            image = self.numpy_to_pt(image)
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
            image = self.pt_to_numpy(image)
226
        return image
YiYi Xu's avatar
YiYi Xu committed
227

228
229
230
231
232
233
234
235
    def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
        """
        create a mask
        """
        image[image < 0.5] = 0
        image[image >= 0.5] = 1
        return image

YiYi Xu's avatar
YiYi Xu committed
236
237
238
    def preprocess(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
239
240
        height: Optional[int] = None,
        width: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
241
242
    ) -> torch.Tensor:
        """
Steven Liu's avatar
Steven Liu committed
243
        Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
YiYi Xu's avatar
YiYi Xu committed
244
245
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
            if isinstance(image, torch.Tensor):
                # if image is a pytorch tensor could have 2 possible shapes:
                #    1. batch x height x width: we should insert the channel dimension at position 1
                #    2. channnel x height x width: we should insert batch dimension at position 0,
                #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
                #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
                image = image.unsqueeze(1)
            else:
                # if it is a numpy array, it could have 2 possible shapes:
                #   1. batch x height x width: insert channel dimension on last position
                #   2. height x width x channel: insert batch dimension on first position
                if image.shape[-1] == 1:
                    image = np.expand_dims(image, axis=0)
                else:
                    image = np.expand_dims(image, axis=-1)

YiYi Xu's avatar
YiYi Xu committed
265
266
267
268
269
270
271
272
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
273
274
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
275
276
            elif self.config.do_convert_grayscale:
                image = [self.convert_to_grayscale(i) for i in image]
277
            if self.config.do_resize:
278
                height, width = self.get_default_height_width(image[0], height, width)
279
280
                image = [self.resize(i, height, width) for i in image]
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
281
282
283
284
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
285

YiYi Xu's avatar
YiYi Xu committed
286
            image = self.numpy_to_pt(image)
287
288

            height, width = self.get_default_height_width(image, height, width)
289
290
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
291
292
293

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
294

295
296
297
298
            if self.config.do_convert_grayscale and image.ndim == 3:
                image = image.unsqueeze(1)

            channel = image.shape[1]
299
300
301
302
            # don't need any preprocess if the image is latents
            if channel == 4:
                return image

303
            height, width = self.get_default_height_width(image, height, width)
304
305
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
306
307

        # expected range [0,1], normalize to [-1,1]
308
        do_normalize = self.config.do_normalize
309
        if image.min() < 0 and do_normalize:
YiYi Xu's avatar
YiYi Xu committed
310
311
312
313
314
315
316
317
318
319
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

320
321
322
        if self.config.do_binarize:
            image = self.binarize(image)

YiYi Xu's avatar
YiYi Xu committed
323
324
325
326
        return image

    def postprocess(
        self,
327
        image: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
328
        output_type: str = "pil",
329
        do_denormalize: Optional[List[bool]] = None,
YiYi Xu's avatar
YiYi Xu committed
330
    ):
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
354
355
356
357
358
359
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
360
361

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
362
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
363
364
365
366


class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
Steven Liu's avatar
Steven Liu committed
367
    Image processor for VAE LDM3D.
estelleafl's avatar
estelleafl committed
368
369
370
371
372

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
373
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
estelleafl's avatar
estelleafl committed
374
375
376
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
377
            Whether to normalize the image to [-1,1].
estelleafl's avatar
estelleafl committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
395
        Convert a NumPy image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

    @staticmethod
    def rgblike_to_depthmap(image):
        """
        Args:
            image: RGB-like depth image

        Returns: depth map

        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

    def numpy_to_depth(self, images):
        """
Steven Liu's avatar
Steven Liu committed
421
        Convert a NumPy depth image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
422
423
424
        """
        if images.ndim == 3:
            images = images[None, ...]
425
426
427
428
429
430
431
432
433
        images_depth = images[:, :, :, 3:]
        if images.shape[-1] == 6:
            images_depth = (images_depth * 255).round().astype("uint8")
            pil_images = [
                Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
            ]
        elif images.shape[-1] == 4:
            images_depth = (images_depth * 65535.0).astype(np.uint16)
            pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
estelleafl's avatar
estelleafl committed
434
        else:
435
            raise Exception("Not supported")
estelleafl's avatar
estelleafl committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

        return pil_images

    def postprocess(
        self,
        image: torch.FloatTensor,
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
    ):
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
467
468
469
470
471
            if image.shape[-1] == 6:
                image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
            else:
                image_depth = image[:, :, :, 3:]
            return image[:, :, :, :3], image_depth
estelleafl's avatar
estelleafl committed
472
473
474
475
476

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")