image_processor.py 35.5 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
16
from typing import List, Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
17
18

import numpy as np
Anh71me's avatar
Anh71me committed
19
import PIL.Image
YiYi Xu's avatar
YiYi Xu committed
20
import torch
21
from PIL import Image, ImageFilter, ImageOps
YiYi Xu's avatar
YiYi Xu committed
22
23

from .configuration_utils import ConfigMixin, register_to_config
24
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
25
26


27
28
29
30
31
32
33
34
35
PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
    torch.FloatTensor,
    List[PIL.Image.Image],
    List[np.ndarray],
    List[torch.FloatTensor],
]

36
PipelineDepthInput = PipelineImageInput
37

38

YiYi Xu's avatar
YiYi Xu committed
39
40
class VaeImageProcessor(ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
41
    Image processor for VAE.
YiYi Xu's avatar
YiYi Xu committed
42
43
44

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
45
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
Steven Liu's avatar
Steven Liu committed
46
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
YiYi Xu's avatar
YiYi Xu committed
47
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
48
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
YiYi Xu's avatar
YiYi Xu committed
49
50
51
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
52
            Whether to normalize the image to [-1,1].
53
        do_binarize (`bool`, *optional*, defaults to `False`):
54
            Whether to binarize the image to 0/1.
55
56
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
57
58
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
YiYi Xu's avatar
YiYi Xu committed
59
60
61
62
63
64
65
66
67
68
69
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
70
        do_binarize: bool = False,
71
        do_convert_rgb: bool = False,
72
        do_convert_grayscale: bool = False,
YiYi Xu's avatar
YiYi Xu committed
73
74
    ):
        super().__init__()
75
76
77
78
79
80
81
        if do_convert_rgb and do_convert_grayscale:
            raise ValueError(
                "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
                " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
                " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
            )
            self.config.do_convert_rgb = False
YiYi Xu's avatar
YiYi Xu committed
82
83

    @staticmethod
84
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
YiYi Xu's avatar
YiYi Xu committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
100
101
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
Steven Liu's avatar
Steven Liu committed
102
        Convert a PIL image or a list of PIL images to NumPy arrays.
103
104
105
106
107
108
109
110
111
112
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
    def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
113
        """
Steven Liu's avatar
Steven Liu committed
114
        Convert a NumPy image to a PyTorch tensor.
YiYi Xu's avatar
YiYi Xu committed
115
116
117
118
119
120
121
122
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
123
    def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
YiYi Xu's avatar
YiYi Xu committed
124
        """
Steven Liu's avatar
Steven Liu committed
125
        Convert a PyTorch tensor to a NumPy image.
YiYi Xu's avatar
YiYi Xu committed
126
127
128
129
130
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
131
    def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
YiYi Xu's avatar
YiYi Xu committed
132
        """
Steven Liu's avatar
Steven Liu committed
133
        Normalize an image array to [-1,1].
YiYi Xu's avatar
YiYi Xu committed
134
135
136
        """
        return 2.0 * images - 1.0

137
    @staticmethod
138
    def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
139
        """
Steven Liu's avatar
Steven Liu committed
140
        Denormalize an image array to [0,1].
141
142
143
        """
        return (images / 2 + 0.5).clamp(0, 1)

144
145
146
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
        """
147
        Converts a PIL image to RGB format.
148
149
        """
        image = image.convert("RGB")
150

151
152
        return image

153
154
155
156
157
158
159
160
161
    @staticmethod
    def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
        """
        Converts a PIL image to grayscale format.
        """
        image = image.convert("L")

        return image

162
163
164
    @staticmethod
    def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
        """
165
        Applies Gaussian blur to an image.
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        """
        image = image.filter(ImageFilter.GaussianBlur(blur_factor))

        return image

    @staticmethod
    def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
        """
        Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image;
        for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128.

        Args:
            mask_image (PIL.Image.Image): Mask image.
            width (int): Width of the image to be processed.
            height (int): Height of the image to be processed.
            pad (int, optional): Padding to be added to the crop region. Defaults to 0.

        Returns:
            tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio.
        """

        mask_image = mask_image.convert("L")
        mask = np.array(mask_image)

        # 1. find a rectangular region that contains all masked ares in an image
        h, w = mask.shape
        crop_left = 0
        for i in range(w):
            if not (mask[:, i] == 0).all():
                break
            crop_left += 1

        crop_right = 0
        for i in reversed(range(w)):
            if not (mask[:, i] == 0).all():
                break
            crop_right += 1

        crop_top = 0
        for i in range(h):
            if not (mask[i] == 0).all():
                break
            crop_top += 1

        crop_bottom = 0
        for i in reversed(range(h)):
            if not (mask[i] == 0).all():
                break
            crop_bottom += 1

        # 2. add padding to the crop region
        x1, y1, x2, y2 = (
            int(max(crop_left - pad, 0)),
            int(max(crop_top - pad, 0)),
            int(min(w - crop_right + pad, w)),
            int(min(h - crop_bottom + pad, h)),
        )

        # 3. expands crop region to match the aspect ratio of the image to be processed
        ratio_crop_region = (x2 - x1) / (y2 - y1)
        ratio_processing = width / height

        if ratio_crop_region > ratio_processing:
            desired_height = (x2 - x1) / ratio_processing
            desired_height_diff = int(desired_height - (y2 - y1))
            y1 -= desired_height_diff // 2
            y2 += desired_height_diff - desired_height_diff // 2
            if y2 >= mask_image.height:
                diff = y2 - mask_image.height
                y2 -= diff
                y1 -= diff
            if y1 < 0:
                y2 -= y1
                y1 -= y1
            if y2 >= mask_image.height:
                y2 = mask_image.height
        else:
            desired_width = (y2 - y1) * ratio_processing
            desired_width_diff = int(desired_width - (x2 - x1))
            x1 -= desired_width_diff // 2
            x2 += desired_width_diff - desired_width_diff // 2
            if x2 >= mask_image.width:
                diff = x2 - mask_image.width
                x2 -= diff
                x1 -= diff
            if x1 < 0:
                x2 -= x1
                x1 -= x1
            if x2 >= mask_image.width:
                x2 = mask_image.width

        return x1, y1, x2, y2

    def _resize_and_fill(
260
        self,
261
262
263
264
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
265
        """
266
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
267
268

        Args:
269
270
271
            image: The image to resize.
            width: The width to resize the image to.
            height: The height to resize the image to.
YiYi Xu's avatar
YiYi Xu committed
272
        """
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        ratio = width / height
        src_ratio = image.width / image.height

        src_w = width if ratio < src_ratio else image.width * height // image.height
        src_h = height if ratio >= src_ratio else image.height * width // image.width

        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))

        if ratio < src_ratio:
            fill_height = height // 2 - src_h // 2
            if fill_height > 0:
                res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
                res.paste(
                    resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
                    box=(0, fill_height + src_h),
                )
        elif ratio > src_ratio:
            fill_width = width // 2 - src_w // 2
            if fill_width > 0:
                res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
                res.paste(
                    resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
                    box=(fill_width + src_w, 0),
                )

        return res

    def _resize_and_crop(
        self,
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
        """
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
311

312
313
314
315
316
317
318
        Args:
            image: The image to resize.
            width: The width to resize the image to.
            height: The height to resize the image to.
        """
        ratio = width / height
        src_ratio = image.width / image.height
319

320
321
        src_w = width if ratio > src_ratio else image.width * height // image.height
        src_h = height if ratio <= src_ratio else image.height * width // image.width
322

323
324
325
326
        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
        return res
327
328
329

    def resize(
        self,
330
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
331
332
333
        height: int,
        width: int,
        resize_mode: str = "default",  # "defalt", "fill", "crop"
334
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
335
        """
336
        Resize image.
337
338
339
340

        Args:
            image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor.
341
            height (`int`):
342
                The height to resize to.
343
            width (`int`):
344
                The width to resize to.
345
346
347
348
349
350
351
352
            resize_mode (`str`, *optional*, defaults to `default`):
                The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
                within the specified width and height, and it may not maintaining the original aspect ratio.
                If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
                within the dimensions, filling empty with data from image.
                If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
                within the dimensions, cropping the excess.
                Note that resize_mode `fill` and `crop` are only supported for PIL image input.
353
354
355
356

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
                The resized image.
357
        """
358
359
        if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
            raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
360
        if isinstance(image, PIL.Image.Image):
361
362
363
364
365
366
367
368
369
            if resize_mode == "default":
                image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
            elif resize_mode == "fill":
                image = self._resize_and_fill(image, width, height)
            elif resize_mode == "crop":
                image = self._resize_and_crop(image, width, height)
            else:
                raise ValueError(f"resize_mode {resize_mode} is not supported")

370
371
372
373
374
375
376
377
378
379
380
381
        elif isinstance(image, torch.Tensor):
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
        elif isinstance(image, np.ndarray):
            image = self.numpy_to_pt(image)
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
            image = self.pt_to_numpy(image)
382
        return image
YiYi Xu's avatar
YiYi Xu committed
383

384
385
    def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
        """
386
387
388
389
390
391
392
393
394
        Create a mask.

        Args:
            image (`PIL.Image.Image`):
                The image input, should be a PIL image.

        Returns:
            `PIL.Image.Image`:
                The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
395
396
397
        """
        image[image < 0.5] = 0
        image[image >= 0.5] = 1
398

399
400
        return image

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def get_default_height_width(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        height: Optional[int] = None,
        width: Optional[int] = None,
    ) -> Tuple[int, int]:
        """
        This function return the height and width that are downscaled to the next integer multiple of
        `vae_scale_factor`.

        Args:
            image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
                shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
                have shape `[batch, channel, height, width]`.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the height of `image` input.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use the width of the `image` input.
        """

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[2]
            else:
                height = image.shape[1]

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[3]
            else:
                width = image.shape[2]

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor

        return height, width

YiYi Xu's avatar
YiYi Xu committed
444
445
    def preprocess(
        self,
446
        image: PipelineImageInput,
447
448
        height: Optional[int] = None,
        width: Optional[int] = None,
449
450
        resize_mode: str = "default",  # "defalt", "fill", "crop"
        crops_coords: Optional[Tuple[int, int, int, int]] = None,
YiYi Xu's avatar
YiYi Xu committed
451
452
    ) -> torch.Tensor:
        """
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        Preprocess the image input.

        Args:
            image (`pipeline_image_input`):
                The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use  get_default_height_width()` to get the default width.
            resize_mode (`str`, *optional*, defaults to `default`):
                The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
                within the specified width and height, and it may not maintaining the original aspect ratio.
                If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
                within the dimensions, filling empty with data from image.
                If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
                within the dimensions, cropping the excess.
                Note that resize_mode `fill` and `crop` are only supported for PIL image input.
            crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
                The crop coordinates for each image in the batch. If `None`, will not crop the image.
YiYi Xu's avatar
YiYi Xu committed
472
473
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
            if isinstance(image, torch.Tensor):
                # if image is a pytorch tensor could have 2 possible shapes:
                #    1. batch x height x width: we should insert the channel dimension at position 1
                #    2. channnel x height x width: we should insert batch dimension at position 0,
                #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
                #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
                image = image.unsqueeze(1)
            else:
                # if it is a numpy array, it could have 2 possible shapes:
                #   1. batch x height x width: insert channel dimension on last position
                #   2. height x width x channel: insert batch dimension on first position
                if image.shape[-1] == 1:
                    image = np.expand_dims(image, axis=0)
                else:
                    image = np.expand_dims(image, axis=-1)

YiYi Xu's avatar
YiYi Xu committed
493
494
495
496
497
498
499
500
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
501
502
503
504
505
            if crops_coords is not None:
                image = [i.crop(crops_coords) for i in image]
            if self.config.do_resize:
                height, width = self.get_default_height_width(image[0], height, width)
                image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
506
507
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
508
509
            elif self.config.do_convert_grayscale:
                image = [self.convert_to_grayscale(i) for i in image]
510
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
511
512
513
514
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
515

YiYi Xu's avatar
YiYi Xu committed
516
            image = self.numpy_to_pt(image)
517
518

            height, width = self.get_default_height_width(image, height, width)
519
520
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
521
522
523

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
524

525
526
527
528
            if self.config.do_convert_grayscale and image.ndim == 3:
                image = image.unsqueeze(1)

            channel = image.shape[1]
529
530
531
532
            # don't need any preprocess if the image is latents
            if channel == 4:
                return image

533
            height, width = self.get_default_height_width(image, height, width)
534
535
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
536
537

        # expected range [0,1], normalize to [-1,1]
538
        do_normalize = self.config.do_normalize
539
        if do_normalize and image.min() < 0:
YiYi Xu's avatar
YiYi Xu committed
540
541
542
543
544
545
546
547
548
549
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

550
551
552
        if self.config.do_binarize:
            image = self.binarize(image)

YiYi Xu's avatar
YiYi Xu committed
553
554
555
556
        return image

    def postprocess(
        self,
557
        image: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
558
        output_type: str = "pil",
559
        do_denormalize: Optional[List[bool]] = None,
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
            image (`torch.FloatTensor`):
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
                The postprocessed image.
        """
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
600
601
602
603
604
605
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
606
607

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
608
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    def apply_overlay(
        self,
        mask: PIL.Image.Image,
        init_image: PIL.Image.Image,
        image: PIL.Image.Image,
        crop_coords: Optional[Tuple[int, int, int, int]] = None,
    ) -> PIL.Image.Image:
        """
        overlay the inpaint output to the original image
        """

        width, height = image.width, image.height

        init_image = self.resize(init_image, width=width, height=height)
        mask = self.resize(mask, width=width, height=height)

        init_image_masked = PIL.Image.new("RGBa", (width, height))
        init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
        init_image_masked = init_image_masked.convert("RGBA")

        if crop_coords is not None:
631
632
633
            x, y, x2, y2 = crop_coords
            w = x2 - x
            h = y2 - y
634
635
636
637
638
639
640
641
642
643
644
            base_image = PIL.Image.new("RGBA", (width, height))
            image = self.resize(image, height=h, width=w, resize_mode="crop")
            base_image.paste(image, (x, y))
            image = base_image.convert("RGB")

        image = image.convert("RGBA")
        image.alpha_composite(init_image_masked)
        image = image.convert("RGB")

        return image

estelleafl's avatar
estelleafl committed
645
646
647

class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
Steven Liu's avatar
Steven Liu committed
648
    Image processor for VAE LDM3D.
estelleafl's avatar
estelleafl committed
649
650
651
652
653

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
654
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
estelleafl's avatar
estelleafl committed
655
656
657
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
658
            Whether to normalize the image to [-1,1].
estelleafl's avatar
estelleafl committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
674
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
675
        """
Steven Liu's avatar
Steven Liu committed
676
        Convert a NumPy image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
677
678
679
680
681
682
683
684
685
686
687
688
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

689
690
691
692
693
694
695
696
697
698
699
700
    @staticmethod
    def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
        Convert a PIL image or a list of PIL images to NumPy arrays.
        """
        if not isinstance(images, list):
            images = [images]

        images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
        images = np.stack(images, axis=0)
        return images

estelleafl's avatar
estelleafl committed
701
    @staticmethod
702
    def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
estelleafl's avatar
estelleafl committed
703
704
705
706
707
708
709
710
711
        """
        Args:
            image: RGB-like depth image

        Returns: depth map

        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

712
    def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
713
        """
Steven Liu's avatar
Steven Liu committed
714
        Convert a NumPy depth image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
715
716
717
        """
        if images.ndim == 3:
            images = images[None, ...]
718
719
720
721
722
723
724
725
726
        images_depth = images[:, :, :, 3:]
        if images.shape[-1] == 6:
            images_depth = (images_depth * 255).round().astype("uint8")
            pil_images = [
                Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
            ]
        elif images.shape[-1] == 4:
            images_depth = (images_depth * 65535.0).astype(np.uint16)
            pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
estelleafl's avatar
estelleafl committed
727
        else:
728
            raise Exception("Not supported")
estelleafl's avatar
estelleafl committed
729
730
731
732
733
734
735
736

        return pil_images

    def postprocess(
        self,
        image: torch.FloatTensor,
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
            image (`torch.FloatTensor`):
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
                The postprocessed image.
        """
estelleafl's avatar
estelleafl committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
776
777
778
779
780
            if image.shape[-1] == 6:
                image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
            else:
                image_depth = image[:, :, :, 3:]
            return image[:, :, :, :3], image_depth
estelleafl's avatar
estelleafl committed
781
782
783
784
785

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

    def preprocess(
        self,
        rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
        depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
        height: Optional[int] = None,
        width: Optional[int] = None,
        target_res: Optional[int] = None,
    ) -> torch.Tensor:
        """
        Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
            raise Exception("This is not yet supported")

        if isinstance(rgb, supported_formats):
            rgb = [rgb]
            depth = [depth]
        elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(rgb[0], PIL.Image.Image):
            if self.config.do_convert_rgb:
                raise Exception("This is not yet supported")
                # rgb = [self.convert_to_rgb(i) for i in rgb]
                # depth = [self.convert_to_depth(i) for i in depth]  #TODO define convert_to_depth
            if self.config.do_resize or target_res:
                height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
                rgb = [self.resize(i, height, width) for i in rgb]
                depth = [self.resize(i, height, width) for i in depth]
            rgb = self.pil_to_numpy(rgb)  # to np
            rgb = self.numpy_to_pt(rgb)  # to pt

            depth = self.depth_pil_to_numpy(depth)  # to np
            depth = self.numpy_to_pt(depth)  # to pt

        elif isinstance(rgb[0], np.ndarray):
            rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
            rgb = self.numpy_to_pt(rgb)
            height, width = self.get_default_height_width(rgb, height, width)
            if self.config.do_resize:
                rgb = self.resize(rgb, height, width)

            depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
            depth = self.numpy_to_pt(depth)
            height, width = self.get_default_height_width(depth, height, width)
            if self.config.do_resize:
                depth = self.resize(depth, height, width)

        elif isinstance(rgb[0], torch.Tensor):
            raise Exception("This is not yet supported")
            # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)

            # if self.config.do_convert_grayscale and rgb.ndim == 3:
            #     rgb = rgb.unsqueeze(1)

            # channel = rgb.shape[1]

            # height, width = self.get_default_height_width(rgb, height, width)
            # if self.config.do_resize:
            #     rgb = self.resize(rgb, height, width)

            # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)

            # if self.config.do_convert_grayscale and depth.ndim == 3:
            #     depth = depth.unsqueeze(1)

            # channel = depth.shape[1]
            # # don't need any preprocess if the image is latents
            # if depth == 4:
            #     return rgb, depth

            # height, width = self.get_default_height_width(depth, height, width)
            # if self.config.do_resize:
            #     depth = self.resize(depth, height, width)
        # expected range [0,1], normalize to [-1,1]
        do_normalize = self.config.do_normalize
        if rgb.min() < 0 and do_normalize:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            rgb = self.normalize(rgb)
            depth = self.normalize(depth)

        if self.config.do_binarize:
            rgb = self.binarize(rgb)
            depth = self.binarize(depth)

        return rgb, depth