__init__.py 4.99 KB
Newer Older
1
2
3
from typing import TYPE_CHECKING

from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
4
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
5
6
7
8
9
10


def text_encoder_lora_state_dict(text_encoder):
    deprecate(
        "text_encoder_load_state_dict in `models`",
        "0.27.0",
11
        "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    )
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


if is_transformers_available():

    def text_encoder_attn_modules(text_encoder):
        deprecate(
            "text_encoder_attn_modules in `models`",
            "0.27.0",
37
            "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        )
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))
        else:
            raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

        return attn_modules


_import_structure = {}

if is_torch_available():
57
    _import_structure["single_file_model"] = ["FromOriginalModelMixin"]
hlky's avatar
hlky committed
58
    _import_structure["transformer_flux"] = ["FluxTransformer2DLoadersMixin"]
59
    _import_structure["transformer_sd3"] = ["SD3Transformer2DLoadersMixin"]
60
61
62
    _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
    _import_structure["utils"] = ["AttnProcsLayers"]
    if is_transformers_available():
63
        _import_structure["single_file"] = ["FromSingleFileMixin"]
64
65
66
67
68
        _import_structure["lora_pipeline"] = [
            "AmusedLoraLoaderMixin",
            "StableDiffusionLoraLoaderMixin",
            "SD3LoraLoaderMixin",
            "StableDiffusionXLLoraLoaderMixin",
Aryan's avatar
Aryan committed
69
            "LTXVideoLoraLoaderMixin",
70
            "LoraLoaderMixin",
Sayak Paul's avatar
Sayak Paul committed
71
            "FluxLoraLoaderMixin",
Aryan's avatar
Aryan committed
72
            "CogVideoXLoraLoaderMixin",
Aryan's avatar
Aryan committed
73
            "CogView4LoraLoaderMixin",
74
            "Mochi1LoraLoaderMixin",
75
            "HunyuanVideoLoraLoaderMixin",
76
            "SanaLoraLoaderMixin",
77
            "Lumina2LoraLoaderMixin",
Aryan's avatar
Aryan committed
78
            "WanLoraLoaderMixin",
79
        ]
80
        _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
81
82
        _import_structure["ip_adapter"] = [
            "IPAdapterMixin",
hlky's avatar
hlky committed
83
            "FluxIPAdapterMixin",
84
85
            "SD3IPAdapterMixin",
        ]
86

87
88
_import_structure["peft"] = ["PeftAdapterMixin"]

89
90
91

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
    if is_torch_available():
92
        from .single_file_model import FromOriginalModelMixin
hlky's avatar
hlky committed
93
        from .transformer_flux import FluxTransformer2DLoadersMixin
94
        from .transformer_sd3 import SD3Transformer2DLoadersMixin
95
96
97
98
        from .unet import UNet2DConditionLoadersMixin
        from .utils import AttnProcsLayers

        if is_transformers_available():
99
            from .ip_adapter import (
hlky's avatar
hlky committed
100
                FluxIPAdapterMixin,
101
102
103
                IPAdapterMixin,
                SD3IPAdapterMixin,
            )
104
105
            from .lora_pipeline import (
                AmusedLoraLoaderMixin,
Aryan's avatar
Aryan committed
106
                CogVideoXLoraLoaderMixin,
Aryan's avatar
Aryan committed
107
                CogView4LoraLoaderMixin,
Sayak Paul's avatar
Sayak Paul committed
108
                FluxLoraLoaderMixin,
109
                HunyuanVideoLoraLoaderMixin,
110
                LoraLoaderMixin,
Aryan's avatar
Aryan committed
111
                LTXVideoLoraLoaderMixin,
112
                Lumina2LoraLoaderMixin,
113
                Mochi1LoraLoaderMixin,
114
                SanaLoraLoaderMixin,
115
116
117
                SD3LoraLoaderMixin,
                StableDiffusionLoraLoaderMixin,
                StableDiffusionXLLoraLoaderMixin,
Aryan's avatar
Aryan committed
118
                WanLoraLoaderMixin,
119
            )
120
121
            from .single_file import FromSingleFileMixin
            from .textual_inversion import TextualInversionLoaderMixin
122
123

    from .peft import PeftAdapterMixin
124
125
126
127
else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)