__init__.py 4.85 KB
Newer Older
1
2
3
from typing import TYPE_CHECKING

from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
4
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
5
6
7
8
9
10


def text_encoder_lora_state_dict(text_encoder):
    deprecate(
        "text_encoder_load_state_dict in `models`",
        "0.27.0",
11
        "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    )
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


if is_transformers_available():

    def text_encoder_attn_modules(text_encoder):
        deprecate(
            "text_encoder_attn_modules in `models`",
            "0.27.0",
37
            "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        )
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))
        else:
            raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

        return attn_modules


_import_structure = {}

if is_torch_available():
57
    _import_structure["single_file_model"] = ["FromOriginalModelMixin"]
hlky's avatar
hlky committed
58
    _import_structure["transformer_flux"] = ["FluxTransformer2DLoadersMixin"]
59
    _import_structure["transformer_sd3"] = ["SD3Transformer2DLoadersMixin"]
60
61
62
    _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
    _import_structure["utils"] = ["AttnProcsLayers"]
    if is_transformers_available():
63
        _import_structure["single_file"] = ["FromSingleFileMixin"]
64
65
66
67
68
        _import_structure["lora_pipeline"] = [
            "AmusedLoraLoaderMixin",
            "StableDiffusionLoraLoaderMixin",
            "SD3LoraLoaderMixin",
            "StableDiffusionXLLoraLoaderMixin",
Aryan's avatar
Aryan committed
69
            "LTXVideoLoraLoaderMixin",
70
            "LoraLoaderMixin",
Sayak Paul's avatar
Sayak Paul committed
71
            "FluxLoraLoaderMixin",
Aryan's avatar
Aryan committed
72
            "CogVideoXLoraLoaderMixin",
73
            "Mochi1LoraLoaderMixin",
74
            "HunyuanVideoLoraLoaderMixin",
75
            "SanaLoraLoaderMixin",
76
            "Lumina2LoraLoaderMixin",
77
        ]
78
        _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
79
80
        _import_structure["ip_adapter"] = [
            "IPAdapterMixin",
hlky's avatar
hlky committed
81
            "FluxIPAdapterMixin",
82
83
            "SD3IPAdapterMixin",
        ]
84

85
86
_import_structure["peft"] = ["PeftAdapterMixin"]

87
88
89

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
    if is_torch_available():
90
        from .single_file_model import FromOriginalModelMixin
hlky's avatar
hlky committed
91
        from .transformer_flux import FluxTransformer2DLoadersMixin
92
        from .transformer_sd3 import SD3Transformer2DLoadersMixin
93
94
95
96
        from .unet import UNet2DConditionLoadersMixin
        from .utils import AttnProcsLayers

        if is_transformers_available():
97
            from .ip_adapter import (
hlky's avatar
hlky committed
98
                FluxIPAdapterMixin,
99
100
101
                IPAdapterMixin,
                SD3IPAdapterMixin,
            )
102
103
            from .lora_pipeline import (
                AmusedLoraLoaderMixin,
Aryan's avatar
Aryan committed
104
                CogVideoXLoraLoaderMixin,
Sayak Paul's avatar
Sayak Paul committed
105
                FluxLoraLoaderMixin,
106
                HunyuanVideoLoraLoaderMixin,
107
                LoraLoaderMixin,
Aryan's avatar
Aryan committed
108
                LTXVideoLoraLoaderMixin,
109
                Lumina2LoraLoaderMixin,
110
                Mochi1LoraLoaderMixin,
111
                SanaLoraLoaderMixin,
112
113
114
115
                SD3LoraLoaderMixin,
                StableDiffusionLoraLoaderMixin,
                StableDiffusionXLLoraLoaderMixin,
            )
116
117
            from .single_file import FromSingleFileMixin
            from .textual_inversion import TextualInversionLoaderMixin
118
119

    from .peft import PeftAdapterMixin
120
121
122
123
else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)