__init__.py 3.56 KB
Newer Older
1
2
3
from typing import TYPE_CHECKING

from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
4
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
5
6
7
8
9
10


def text_encoder_lora_state_dict(text_encoder):
    deprecate(
        "text_encoder_load_state_dict in `models`",
        "0.27.0",
11
        "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    )
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


if is_transformers_available():

    def text_encoder_attn_modules(text_encoder):
        deprecate(
            "text_encoder_attn_modules in `models`",
            "0.27.0",
37
            "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        )
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))
        else:
            raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

        return attn_modules


_import_structure = {}

if is_torch_available():
    _import_structure["single_file"] = ["FromOriginalControlnetMixin", "FromOriginalVAEMixin"]
    _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
    _import_structure["utils"] = ["AttnProcsLayers"]

    if is_transformers_available():
        _import_structure["single_file"].extend(["FromSingleFileMixin"])
        _import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin"]
        _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
65
        _import_structure["ip_adapter"] = ["IPAdapterMixin"]
66

67
68
_import_structure["peft"] = ["PeftAdapterMixin"]

69
70
71
72
73
74
75
76

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
    if is_torch_available():
        from .single_file import FromOriginalControlnetMixin, FromOriginalVAEMixin
        from .unet import UNet2DConditionLoadersMixin
        from .utils import AttnProcsLayers

        if is_transformers_available():
77
            from .ip_adapter import IPAdapterMixin
78
79
80
            from .lora import LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin
            from .single_file import FromSingleFileMixin
            from .textual_inversion import TextualInversionLoaderMixin
81
82

    from .peft import PeftAdapterMixin
83
84
85
86
else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)