autoencoder_kl.py 20.7 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Optional, Tuple, Union
15
16
17
18

import torch
import torch.nn as nn

19
from ...configuration_utils import ConfigMixin, register_to_config
20
from ...loaders import PeftAdapterMixin
21
from ...loaders.single_file_model import FromOriginalModelMixin
22
from ...utils import deprecate
23
from ...utils.accelerate_utils import apply_forward_hook
24
from ..attention import AttentionMixin
25
from ..attention_processor import (
26
27
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
28
    Attention,
29
30
    AttnAddedKVProcessor,
    AttnProcessor,
31
    FusedAttnProcessor2_0,
32
)
33
34
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
35
from .vae import AutoencoderMixin, Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
36
37


38
39
40
class AutoencoderKL(
    ModelMixin, AttentionMixin, AutoencoderMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin
):
Steven Liu's avatar
Steven Liu committed
41
42
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
43

Steven Liu's avatar
Steven Liu committed
44
45
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
46
47
48
49

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
50
51
52
53
54
55
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
56
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
57
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
58
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
59
60
61
62
63
64
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Quentin Gallouédec's avatar
Quentin Gallouédec committed
65
            Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
66
67
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
68
69
            can be fine-tuned / trained to a lower range without losing too much precision in which case `force_upcast`
            can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
70
71
72
        mid_block_add_attention (`bool`, *optional*, default to `True`):
            If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the
            mid_block will only have resnet blocks
73
74
    """

75
    _supports_gradient_checkpointing = True
76
    _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"]
77

78
79
80
81
82
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
83
84
85
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
86
87
88
89
90
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
91
        scaling_factor: float = 0.18215,
Dhruv Nair's avatar
Dhruv Nair committed
92
        shift_factor: Optional[float] = None,
93
94
        latents_mean: Optional[Tuple[float]] = None,
        latents_std: Optional[Tuple[float]] = None,
95
        force_upcast: bool = True,
Dhruv Nair's avatar
Dhruv Nair committed
96
97
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
98
        mid_block_add_attention: bool = True,
99
100
101
102
103
104
105
106
107
108
109
110
111
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
112
            mid_block_add_attention=mid_block_add_attention,
113
114
115
116
117
118
119
120
121
122
123
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
124
            mid_block_add_attention=mid_block_add_attention,
125
126
        )

Dhruv Nair's avatar
Dhruv Nair committed
127
128
        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None
129
130
131
132
133
134
135
136
137
138
139

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
140
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
141
142
        self.tile_overlap_factor = 0.25

143
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
144
145
146
147
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
148
149
150
151
152
153
154
155
156
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

157
        self.set_attn_processor(processor)
158

159
160
161
162
163
164
165
166
167
168
169
170
    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_size or height > self.tile_sample_min_size):
            return self._tiled_encode(x)

        enc = self.encoder(x)
        if self.quant_conv is not None:
            enc = self.quant_conv(enc)

        return enc

171
    @apply_forward_hook
172
    def encode(
173
        self, x: torch.Tensor, return_dict: bool = True
174
175
176
177
178
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
179
            x (`torch.Tensor`): Input batch of images.
180
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
181
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
182
183
184

        Returns:
                The latent representations of the encoded images. If `return_dict` is True, a
Dhruv Nair's avatar
Dhruv Nair committed
185
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
186
        """
Patrick von Platen's avatar
Patrick von Platen committed
187
        if self.use_slicing and x.shape[0] > 1:
188
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
Patrick von Platen's avatar
Patrick von Platen committed
189
190
            h = torch.cat(encoded_slices)
        else:
191
            h = self._encode(x)
Dhruv Nair's avatar
Dhruv Nair committed
192

193
        posterior = DiagonalGaussianDistribution(h)
194
195
196
197
198
199

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

200
    def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
201
202
203
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

Dhruv Nair's avatar
Dhruv Nair committed
204
205
206
        if self.post_quant_conv is not None:
            z = self.post_quant_conv(z)

207
208
209
210
211
212
213
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

214
    @apply_forward_hook
Dhruv Nair's avatar
Dhruv Nair committed
215
216
217
    def decode(
        self, z: torch.FloatTensor, return_dict: bool = True, generator=None
    ) -> Union[DecoderOutput, torch.FloatTensor]:
218
219
220
221
        """
        Decode a batch of images.

        Args:
222
            z (`torch.Tensor`): Input batch of latent vectors.
223
224
225
226
227
228
229
230
231
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.

        """
232
233
234
235
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
Dhruv Nair's avatar
Dhruv Nair committed
236
            decoded = self._decode(z).sample
237
238
239
240
241
242

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

243
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
244
245
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
246
247
248
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

249
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
250
251
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
252
253
254
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
        output, but they should be much less noticeable.

        Args:
            x (`torch.Tensor`): Input batch of images.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """

        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        enc = torch.cat(result_rows, dim=2)
        return enc

303
    def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
304
        r"""Encode a batch of images using a tiled encoder.
305

306
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
Steven Liu's avatar
Steven Liu committed
307
308
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
309
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
Steven Liu's avatar
Steven Liu committed
310
311
312
        output, but they should be much less noticeable.

        Args:
313
            x (`torch.Tensor`): Input batch of images.
Steven Liu's avatar
Steven Liu committed
314
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
315
                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Steven Liu's avatar
Steven Liu committed
316
317

        Returns:
Dhruv Nair's avatar
Dhruv Nair committed
318
319
320
            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
                `tuple` is returned.
321
        """
322
323
324
325
326
327
328
        deprecation_message = (
            "The tiled_encode implementation supporting the `return_dict` parameter is deprecated. In the future, the "
            "implementation of this method will be replaced with that of `_tiled_encode` and you will no longer be able "
            "to pass `return_dict`. You will also have to create a `DiagonalGaussianDistribution()` from the returned value."
        )
        deprecate("tiled_encode", "1.0.0", deprecation_message, standard_warn=False)

329
330
331
332
333
334
335
336
337
338
339
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
340
341
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

365
    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
Steven Liu's avatar
Steven Liu committed
366
367
        r"""
        Decode a batch of images using a tiled decoder.
368

369
        Args:
370
            z (`torch.Tensor`): Input batch of latent vectors.
Steven Liu's avatar
Steven Liu committed
371
372
373
374
375
376
377
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
378
379
380
381
382
383
384
385
386
387
388
389
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
390
391
                if self.config.use_post_quant_conv:
                    tile = self.post_quant_conv(tile)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

414
415
    def forward(
        self,
416
        sample: torch.Tensor,
417
418
419
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
420
    ) -> Union[DecoderOutput, torch.Tensor]:
421
422
        r"""
        Args:
423
            sample (`torch.Tensor`): Input sample.
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
441

442
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
443
444
    def fuse_qkv_projections(self):
        """
445
446
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
447

Steven Liu's avatar
Steven Liu committed
448
        > [!WARNING] > This API is 🧪 experimental.
449
450
451
452
453
454
455
456
457
458
459
460
461
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

462
463
        self.set_attn_processor(FusedAttnProcessor2_0())

464
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
465
466
467
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
468
        > [!WARNING] > This API is 🧪 experimental.
469
470
471
472

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)