"src/vscode:/vscode.git/clone" did not exist on "f6feb69991d29c5bac6c97a859a8fc0a50868f20"
autoencoder_kl.py 24.5 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Dict, Optional, Tuple, Union
15
16
17
18

import torch
import torch.nn as nn

19
from ...configuration_utils import ConfigMixin, register_to_config
20
from ...loaders import PeftAdapterMixin
21
from ...loaders.single_file_model import FromOriginalModelMixin
22
from ...utils import deprecate
23
24
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import (
25
26
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
27
    Attention,
28
29
30
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
31
    FusedAttnProcessor2_0,
32
)
33
34
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
35
36
37
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder


38
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin):
Steven Liu's avatar
Steven Liu committed
39
40
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
41

Steven Liu's avatar
Steven Liu committed
42
43
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
44
45
46
47

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
48
49
50
51
52
53
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
54
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
55
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
56
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
57
58
59
60
61
62
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Quentin Gallouédec's avatar
Quentin Gallouédec committed
63
            Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
64
65
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
66
67
            can be fine-tuned / trained to a lower range without losing too much precision in which case `force_upcast`
            can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
68
69
70
        mid_block_add_attention (`bool`, *optional*, default to `True`):
            If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the
            mid_block will only have resnet blocks
71
72
    """

73
    _supports_gradient_checkpointing = True
74
    _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"]
75

76
77
78
79
80
81
82
83
84
85
86
87
88
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
89
        scaling_factor: float = 0.18215,
Dhruv Nair's avatar
Dhruv Nair committed
90
        shift_factor: Optional[float] = None,
91
92
        latents_mean: Optional[Tuple[float]] = None,
        latents_std: Optional[Tuple[float]] = None,
93
        force_upcast: bool = True,
Dhruv Nair's avatar
Dhruv Nair committed
94
95
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
96
        mid_block_add_attention: bool = True,
97
98
99
100
101
102
103
104
105
106
107
108
109
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
110
            mid_block_add_attention=mid_block_add_attention,
111
112
113
114
115
116
117
118
119
120
121
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
122
            mid_block_add_attention=mid_block_add_attention,
123
124
        )

Dhruv Nair's avatar
Dhruv Nair committed
125
126
        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None
127
128
129
130
131
132
133
134
135
136
137

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
138
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
139
140
141
142
143
        self.tile_overlap_factor = 0.25

    def enable_tiling(self, use_tiling: bool = True):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
Steven Liu's avatar
Steven Liu committed
144
145
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
146
147
148
149
150
        """
        self.use_tiling = use_tiling

    def disable_tiling(self):
        r"""
Steven Liu's avatar
Steven Liu committed
151
152
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
153
154
155
156
157
158
159
160
161
162
163
164
        """
        self.enable_tiling(False)

    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
165
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
166
167
        decoding in one step.
        """
168
169
        self.use_slicing = False

170
    @property
171
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
172
173
174
175
176
177
178
179
180
181
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
182
            if hasattr(module, "get_processor"):
183
                processors[f"{name}.processor"] = module.get_processor()
184
185
186
187
188
189
190
191
192
193
194

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

195
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
196
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
197
        r"""
Steven Liu's avatar
Steven Liu committed
198
199
        Sets the attention processor to use to compute attention.

200
        Parameters:
Steven Liu's avatar
Steven Liu committed
201
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
202
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
203
204
205
206
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
207
208
209
210
211
212
213
214
215
216
217
218
219

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
220
                    module.set_processor(processor)
221
                else:
222
                    module.set_processor(processor.pop(f"{name}.processor"))
223
224
225
226
227
228
229

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

230
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
231
232
233
234
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
235
236
237
238
239
240
241
242
243
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

244
        self.set_attn_processor(processor)
245

246
247
248
249
250
251
252
253
254
255
256
257
    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_size or height > self.tile_sample_min_size):
            return self._tiled_encode(x)

        enc = self.encoder(x)
        if self.quant_conv is not None:
            enc = self.quant_conv(enc)

        return enc

258
    @apply_forward_hook
259
    def encode(
260
        self, x: torch.Tensor, return_dict: bool = True
261
262
263
264
265
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
266
            x (`torch.Tensor`): Input batch of images.
267
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
268
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
269
270
271

        Returns:
                The latent representations of the encoded images. If `return_dict` is True, a
Dhruv Nair's avatar
Dhruv Nair committed
272
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
273
        """
Patrick von Platen's avatar
Patrick von Platen committed
274
        if self.use_slicing and x.shape[0] > 1:
275
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
Patrick von Platen's avatar
Patrick von Platen committed
276
277
            h = torch.cat(encoded_slices)
        else:
278
            h = self._encode(x)
Dhruv Nair's avatar
Dhruv Nair committed
279

280
        posterior = DiagonalGaussianDistribution(h)
281
282
283
284
285
286

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

287
    def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
288
289
290
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

Dhruv Nair's avatar
Dhruv Nair committed
291
292
293
        if self.post_quant_conv is not None:
            z = self.post_quant_conv(z)

294
295
296
297
298
299
300
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

301
    @apply_forward_hook
Dhruv Nair's avatar
Dhruv Nair committed
302
303
304
    def decode(
        self, z: torch.FloatTensor, return_dict: bool = True, generator=None
    ) -> Union[DecoderOutput, torch.FloatTensor]:
305
306
307
308
        """
        Decode a batch of images.

        Args:
309
            z (`torch.Tensor`): Input batch of latent vectors.
310
311
312
313
314
315
316
317
318
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.

        """
319
320
321
322
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
Dhruv Nair's avatar
Dhruv Nair committed
323
            decoded = self._decode(z).sample
324
325
326
327
328
329

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

330
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
331
332
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
333
334
335
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

336
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
337
338
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
339
340
341
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
        output, but they should be much less noticeable.

        Args:
            x (`torch.Tensor`): Input batch of images.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """

        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        enc = torch.cat(result_rows, dim=2)
        return enc

390
    def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
391
        r"""Encode a batch of images using a tiled encoder.
392

393
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
Steven Liu's avatar
Steven Liu committed
394
395
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
396
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
Steven Liu's avatar
Steven Liu committed
397
398
399
        output, but they should be much less noticeable.

        Args:
400
            x (`torch.Tensor`): Input batch of images.
Steven Liu's avatar
Steven Liu committed
401
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
402
                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Steven Liu's avatar
Steven Liu committed
403
404

        Returns:
Dhruv Nair's avatar
Dhruv Nair committed
405
406
407
            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
                `tuple` is returned.
408
        """
409
410
411
412
413
414
415
        deprecation_message = (
            "The tiled_encode implementation supporting the `return_dict` parameter is deprecated. In the future, the "
            "implementation of this method will be replaced with that of `_tiled_encode` and you will no longer be able "
            "to pass `return_dict`. You will also have to create a `DiagonalGaussianDistribution()` from the returned value."
        )
        deprecate("tiled_encode", "1.0.0", deprecation_message, standard_warn=False)

416
417
418
419
420
421
422
423
424
425
426
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
427
428
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

452
    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
Steven Liu's avatar
Steven Liu committed
453
454
        r"""
        Decode a batch of images using a tiled decoder.
455

456
        Args:
457
            z (`torch.Tensor`): Input batch of latent vectors.
Steven Liu's avatar
Steven Liu committed
458
459
460
461
462
463
464
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
465
466
467
468
469
470
471
472
473
474
475
476
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
477
478
                if self.config.use_post_quant_conv:
                    tile = self.post_quant_conv(tile)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

501
502
    def forward(
        self,
503
        sample: torch.Tensor,
504
505
506
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
507
    ) -> Union[DecoderOutput, torch.Tensor]:
508
509
        r"""
        Args:
510
            sample (`torch.Tensor`): Input sample.
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
528

529
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
530
531
    def fuse_qkv_projections(self):
        """
532
533
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

553
554
        self.set_attn_processor(FusedAttnProcessor2_0())

555
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
556
557
558
559
560
561
562
563
564
565
566
567
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)