autoencoder_kl.py 23.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Dict, Optional, Tuple, Union
15
16
17
18

import torch
import torch.nn as nn

19
from ...configuration_utils import ConfigMixin, register_to_config
20
from ...loaders import PeftAdapterMixin
21
from ...loaders.single_file_model import FromOriginalModelMixin
22
from ...utils import deprecate
23
24
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import (
25
26
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
27
    Attention,
28
29
30
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
31
    FusedAttnProcessor2_0,
32
)
33
34
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
35
from .vae import AutoencoderMixin, Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
36
37


38
class AutoencoderKL(ModelMixin, AutoencoderMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin):
Steven Liu's avatar
Steven Liu committed
39
40
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
41

Steven Liu's avatar
Steven Liu committed
42
43
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
44
45
46
47

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
48
49
50
51
52
53
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
54
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
55
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
56
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
57
58
59
60
61
62
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Quentin Gallouédec's avatar
Quentin Gallouédec committed
63
            Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
64
65
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
66
67
            can be fine-tuned / trained to a lower range without losing too much precision in which case `force_upcast`
            can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
68
69
70
        mid_block_add_attention (`bool`, *optional*, default to `True`):
            If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the
            mid_block will only have resnet blocks
71
72
    """

73
    _supports_gradient_checkpointing = True
74
    _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"]
75

76
77
78
79
80
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
81
82
83
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
84
85
86
87
88
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
89
        scaling_factor: float = 0.18215,
Dhruv Nair's avatar
Dhruv Nair committed
90
        shift_factor: Optional[float] = None,
91
92
        latents_mean: Optional[Tuple[float]] = None,
        latents_std: Optional[Tuple[float]] = None,
93
        force_upcast: bool = True,
Dhruv Nair's avatar
Dhruv Nair committed
94
95
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
96
        mid_block_add_attention: bool = True,
97
98
99
100
101
102
103
104
105
106
107
108
109
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
110
            mid_block_add_attention=mid_block_add_attention,
111
112
113
114
115
116
117
118
119
120
121
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
122
            mid_block_add_attention=mid_block_add_attention,
123
124
        )

Dhruv Nair's avatar
Dhruv Nair committed
125
126
        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None
127
128
129
130
131
132
133
134
135
136
137

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
138
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
139
140
        self.tile_overlap_factor = 0.25

141
    @property
142
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
143
144
145
146
147
148
149
150
151
152
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
153
            if hasattr(module, "get_processor"):
154
                processors[f"{name}.processor"] = module.get_processor()
155
156
157
158
159
160
161
162
163
164
165

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

166
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
167
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
168
        r"""
Steven Liu's avatar
Steven Liu committed
169
170
        Sets the attention processor to use to compute attention.

171
        Parameters:
Steven Liu's avatar
Steven Liu committed
172
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
173
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
174
175
176
177
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
178
179
180
181
182
183
184
185
186
187
188
189
190

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
191
                    module.set_processor(processor)
192
                else:
193
                    module.set_processor(processor.pop(f"{name}.processor"))
194
195
196
197
198
199
200

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

201
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
202
203
204
205
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
206
207
208
209
210
211
212
213
214
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

215
        self.set_attn_processor(processor)
216

217
218
219
220
221
222
223
224
225
226
227
228
    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_size or height > self.tile_sample_min_size):
            return self._tiled_encode(x)

        enc = self.encoder(x)
        if self.quant_conv is not None:
            enc = self.quant_conv(enc)

        return enc

229
    @apply_forward_hook
230
    def encode(
231
        self, x: torch.Tensor, return_dict: bool = True
232
233
234
235
236
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
237
            x (`torch.Tensor`): Input batch of images.
238
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
239
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
240
241
242

        Returns:
                The latent representations of the encoded images. If `return_dict` is True, a
Dhruv Nair's avatar
Dhruv Nair committed
243
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
244
        """
Patrick von Platen's avatar
Patrick von Platen committed
245
        if self.use_slicing and x.shape[0] > 1:
246
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
Patrick von Platen's avatar
Patrick von Platen committed
247
248
            h = torch.cat(encoded_slices)
        else:
249
            h = self._encode(x)
Dhruv Nair's avatar
Dhruv Nair committed
250

251
        posterior = DiagonalGaussianDistribution(h)
252
253
254
255
256
257

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

258
    def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
259
260
261
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

Dhruv Nair's avatar
Dhruv Nair committed
262
263
264
        if self.post_quant_conv is not None:
            z = self.post_quant_conv(z)

265
266
267
268
269
270
271
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

272
    @apply_forward_hook
Dhruv Nair's avatar
Dhruv Nair committed
273
274
275
    def decode(
        self, z: torch.FloatTensor, return_dict: bool = True, generator=None
    ) -> Union[DecoderOutput, torch.FloatTensor]:
276
277
278
279
        """
        Decode a batch of images.

        Args:
280
            z (`torch.Tensor`): Input batch of latent vectors.
281
282
283
284
285
286
287
288
289
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.

        """
290
291
292
293
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
Dhruv Nair's avatar
Dhruv Nair committed
294
            decoded = self._decode(z).sample
295
296
297
298
299
300

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

301
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
302
303
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
304
305
306
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

307
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
308
309
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
310
311
312
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
        output, but they should be much less noticeable.

        Args:
            x (`torch.Tensor`): Input batch of images.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """

        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        enc = torch.cat(result_rows, dim=2)
        return enc

361
    def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
362
        r"""Encode a batch of images using a tiled encoder.
363

364
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
Steven Liu's avatar
Steven Liu committed
365
366
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
367
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
Steven Liu's avatar
Steven Liu committed
368
369
370
        output, but they should be much less noticeable.

        Args:
371
            x (`torch.Tensor`): Input batch of images.
Steven Liu's avatar
Steven Liu committed
372
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
373
                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Steven Liu's avatar
Steven Liu committed
374
375

        Returns:
Dhruv Nair's avatar
Dhruv Nair committed
376
377
378
            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
                `tuple` is returned.
379
        """
380
381
382
383
384
385
386
        deprecation_message = (
            "The tiled_encode implementation supporting the `return_dict` parameter is deprecated. In the future, the "
            "implementation of this method will be replaced with that of `_tiled_encode` and you will no longer be able "
            "to pass `return_dict`. You will also have to create a `DiagonalGaussianDistribution()` from the returned value."
        )
        deprecate("tiled_encode", "1.0.0", deprecation_message, standard_warn=False)

387
388
389
390
391
392
393
394
395
396
397
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
398
399
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

423
    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
Steven Liu's avatar
Steven Liu committed
424
425
        r"""
        Decode a batch of images using a tiled decoder.
426

427
        Args:
428
            z (`torch.Tensor`): Input batch of latent vectors.
Steven Liu's avatar
Steven Liu committed
429
430
431
432
433
434
435
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
436
437
438
439
440
441
442
443
444
445
446
447
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
448
449
                if self.config.use_post_quant_conv:
                    tile = self.post_quant_conv(tile)
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

472
473
    def forward(
        self,
474
        sample: torch.Tensor,
475
476
477
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
478
    ) -> Union[DecoderOutput, torch.Tensor]:
479
480
        r"""
        Args:
481
            sample (`torch.Tensor`): Input sample.
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
499

500
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
501
502
    def fuse_qkv_projections(self):
        """
503
504
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
505

Steven Liu's avatar
Steven Liu committed
506
        > [!WARNING] > This API is 🧪 experimental.
507
508
509
510
511
512
513
514
515
516
517
518
519
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

520
521
        self.set_attn_processor(FusedAttnProcessor2_0())

522
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
523
524
525
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
526
        > [!WARNING] > This API is 🧪 experimental.
527
528
529
530

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)