autoencoder_kl.py 21.8 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Dict, Optional, Tuple, Union
15
16
17
18

import torch
import torch.nn as nn

19
from ...configuration_utils import ConfigMixin, register_to_config
20
from ...loaders.single_file_model import FromOriginalModelMixin
21
22
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import (
23
24
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
25
    Attention,
26
27
28
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
29
    FusedAttnProcessor2_0,
30
)
31
32
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
33
34
35
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder


36
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalModelMixin):
Steven Liu's avatar
Steven Liu committed
37
38
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
39

Steven Liu's avatar
Steven Liu committed
40
41
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
42
43
44
45

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
46
47
48
49
50
51
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
52
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
53
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
54
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
55
56
57
58
59
60
61
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
62
63
64
65
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
66
67
68
        mid_block_add_attention (`bool`, *optional*, default to `True`):
            If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the
            mid_block will only have resnet blocks
69
70
    """

71
    _supports_gradient_checkpointing = True
72
    _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"]
73

74
75
76
77
78
79
80
81
82
83
84
85
86
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
87
        scaling_factor: float = 0.18215,
Dhruv Nair's avatar
Dhruv Nair committed
88
        shift_factor: Optional[float] = None,
89
90
        latents_mean: Optional[Tuple[float]] = None,
        latents_std: Optional[Tuple[float]] = None,
91
        force_upcast: float = True,
Dhruv Nair's avatar
Dhruv Nair committed
92
93
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
94
        mid_block_add_attention: bool = True,
95
96
97
98
99
100
101
102
103
104
105
106
107
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
108
            mid_block_add_attention=mid_block_add_attention,
109
110
111
112
113
114
115
116
117
118
119
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
120
            mid_block_add_attention=mid_block_add_attention,
121
122
        )

Dhruv Nair's avatar
Dhruv Nair committed
123
124
        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None
125
126
127
128
129
130
131
132
133
134
135

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
136
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
137
138
        self.tile_overlap_factor = 0.25

139
140
141
142
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

143
144
145
    def enable_tiling(self, use_tiling: bool = True):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
Steven Liu's avatar
Steven Liu committed
146
147
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
148
149
150
151
152
        """
        self.use_tiling = use_tiling

    def disable_tiling(self):
        r"""
Steven Liu's avatar
Steven Liu committed
153
154
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
155
156
157
158
159
160
161
162
163
164
165
166
        """
        self.enable_tiling(False)

    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
167
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
168
169
        decoding in one step.
        """
170
171
        self.use_slicing = False

172
    @property
173
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
174
175
176
177
178
179
180
181
182
183
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
184
            if hasattr(module, "get_processor"):
185
                processors[f"{name}.processor"] = module.get_processor()
186
187
188
189
190
191
192
193
194
195
196

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

197
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
198
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
199
        r"""
Steven Liu's avatar
Steven Liu committed
200
201
        Sets the attention processor to use to compute attention.

202
        Parameters:
Steven Liu's avatar
Steven Liu committed
203
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
204
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
205
206
207
208
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
209
210
211
212
213
214
215
216
217
218
219
220
221

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
222
                    module.set_processor(processor)
223
                else:
224
                    module.set_processor(processor.pop(f"{name}.processor"))
225
226
227
228
229
230
231

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

232
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
233
234
235
236
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
237
238
239
240
241
242
243
244
245
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

246
        self.set_attn_processor(processor)
247

248
    @apply_forward_hook
249
    def encode(
250
        self, x: torch.Tensor, return_dict: bool = True
251
252
253
254
255
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
256
            x (`torch.Tensor`): Input batch of images.
257
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
258
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
259
260
261

        Returns:
                The latent representations of the encoded images. If `return_dict` is True, a
Dhruv Nair's avatar
Dhruv Nair committed
262
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
263
        """
264
265
266
        if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
            return self.tiled_encode(x, return_dict=return_dict)

Patrick von Platen's avatar
Patrick von Platen committed
267
268
269
270
271
272
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self.encoder(x)

Dhruv Nair's avatar
Dhruv Nair committed
273
274
275
276
277
        if self.quant_conv is not None:
            moments = self.quant_conv(h)
        else:
            moments = h

278
279
280
281
282
283
284
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

285
    def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
286
287
288
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

Dhruv Nair's avatar
Dhruv Nair committed
289
290
291
        if self.post_quant_conv is not None:
            z = self.post_quant_conv(z)

292
293
294
295
296
297
298
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

299
    @apply_forward_hook
Dhruv Nair's avatar
Dhruv Nair committed
300
301
302
    def decode(
        self, z: torch.FloatTensor, return_dict: bool = True, generator=None
    ) -> Union[DecoderOutput, torch.FloatTensor]:
303
304
305
306
        """
        Decode a batch of images.

        Args:
307
            z (`torch.Tensor`): Input batch of latent vectors.
308
309
310
311
312
313
314
315
316
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.

        """
317
318
319
320
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
Dhruv Nair's avatar
Dhruv Nair committed
321
            decoded = self._decode(z).sample
322
323
324
325
326
327

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

328
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
329
330
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
331
332
333
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

334
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
335
336
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
337
338
339
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

340
    def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
341
        r"""Encode a batch of images using a tiled encoder.
342

343
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
Steven Liu's avatar
Steven Liu committed
344
345
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
346
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
Steven Liu's avatar
Steven Liu committed
347
348
349
        output, but they should be much less noticeable.

        Args:
350
            x (`torch.Tensor`): Input batch of images.
Steven Liu's avatar
Steven Liu committed
351
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
352
                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Steven Liu's avatar
Steven Liu committed
353
354

        Returns:
Dhruv Nair's avatar
Dhruv Nair committed
355
356
357
            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
                `tuple` is returned.
358
359
360
361
362
363
364
365
366
367
368
369
        """
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
370
371
                if self.config.use_quant_conv:
                    tile = self.quant_conv(tile)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

395
    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
Steven Liu's avatar
Steven Liu committed
396
397
        r"""
        Decode a batch of images using a tiled decoder.
398

399
        Args:
400
            z (`torch.Tensor`): Input batch of latent vectors.
Steven Liu's avatar
Steven Liu committed
401
402
403
404
405
406
407
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
408
409
410
411
412
413
414
415
416
417
418
419
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
420
421
                if self.config.use_post_quant_conv:
                    tile = self.post_quant_conv(tile)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

444
445
    def forward(
        self,
446
        sample: torch.Tensor,
447
448
449
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
450
    ) -> Union[DecoderOutput, torch.Tensor]:
451
452
        r"""
        Args:
453
            sample (`torch.Tensor`): Input sample.
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
471

472
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
473
474
    def fuse_qkv_projections(self):
        """
475
476
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

496
497
        self.set_attn_processor(FusedAttnProcessor2_0())

498
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
499
500
501
502
503
504
505
506
507
508
509
510
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)